CHAPTER 19
 Circles

19-1. Arcs, Angles, and Tangents

In a plane, a circle is the set of all points equidistant from a given point called the center. It follows from the definition of a circle that all radii are equal in measure.
A circle is usually named by its center. The circle at the right is called circle O. (symbolized as $\odot O$)

A chord is a segment whose endpoints lie on a circle.
A secant is a line that contains a chord.
A tangent is a line in the plane of a circle, and intersects the circle at exactly one point: the point of tangency.

A central angle is an angle whose vertex is the center of the circle.
An arc is a part of a circle. The measure of a minor arc is the measure of its central angle. The measure of a minor arc is less than 180.

The measure of a semicircle is 180 .
The measure of a major arc is 360 minus the measure of its minor arc.

Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs. $m \overparen{P Q R}=m \overparen{P Q}+m \overparen{Q R}$

Theorems - Tangent Lines

If a line is tangent to a circle, then the line is perpendicular to the radius at the point of tangency.
$\overline{P A} \perp \overline{O A}$ and $\overline{P B} \perp \overline{O B}$
Tangents to a circle from the same exterior point are congruent.
$P A=P B$

Example $1 \square$ In $\odot O$ shown at the right, $\overline{P A}$ and $\overline{P B}$ are tangents, $P B=12$, and $m \angle A P O=25$.
a. Find the measure of $\angle P O A$.
b. Find the length of $P A$.
c. Find the radius of $\odot O$.

Solution

- a. $\overline{P A} \perp \overline{O A}$

$$
\begin{aligned}
& m \angle P A O=90 \\
& m \angle P O A+m \angle A P O+m \angle P A O=180 \\
& m \angle P O A+25+90=180 \\
& m \angle P O A=65
\end{aligned}
$$

b. $P A=P B=12$
c. $\tan 25^{\circ}=\frac{O A}{P A}=\frac{O A}{12}$
$O A=12 \tan 25^{\circ} \approx 5.6$

$\angle P O Q$ and $\angle P O S$ are central angles. $\overparen{P Q}, \overparen{Q R}, \overparen{R S}$, and $\widehat{S P}$ are minor arcs.
$\overparen{Q P S}$ and $\overparen{Q R S}$ are semicircles.
$\overparen{P Q S}$ and $\overparen{S P R}$ are major arcs.

$$
\begin{aligned}
& m \widehat{Q P S}=m \widehat{Q R S}=180 \\
& m \widehat{P Q S}=360-m \widehat{S P}
\end{aligned}
$$

If a line is tangent to a circle, then the line is \perp to the radius at the point of tangency.
Definition of \perp lines
Angle Sum Theorem
Substitution

Tangents to a circle from the same exterior point are \cong.

Exercises - Arcs, Angles, and Tangents

Questions 1-4 refer to the following information.

In the figure above, $\overline{B D}$ is a diameter, and $\overline{P A}$ and $\overline{P D}$ are tangents to circle $O . m \angle C D E=52$, $m \angle A P D=45$, and $A P=9$.

1

What is the measure of $\angle O D C$?

2

What is the measure of $\angle O C D$?

3
What is the measure of $\angle A O D$?

4

What is the length of $P D$?

5

In the figure above, $\odot O$ is inscribed in $\triangle P Q R$. If $P A=12, Q A=6$, and $R B=9.5$, what is the perimeter of $\triangle P Q R$?
A) 46
B) 49
C) 52
D) 55

6

In the figure above, $\overline{O P}$ is a radius and $\overline{P Q}$ is tangent to circle O. If the radius of circle O is 10 and $Q R=16$, what is the length of $\overline{P Q}$?
A) 16
B) 20
C) 24
D) 28

19-2. Arc Lengths and Areas of Sectors

Circumference of a circle: $C=2 \pi r$ or $C=\pi d$
Area of circle:

$$
A=\pi r^{2}
$$

A sector of a circle is a region bound by two radii and an arc of the circle.
The shaded region of the circle at the right is called sector $A O B$.
Length of $\overparen{A B}=2 \pi r \cdot \frac{m \angle A O B}{360}$

Area of sector $A O B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
The distance traveled by a wheel $=2 \pi r \times$ number of revolutions

Example $1 \square$ In circle O shown at the right, $\overline{A B}$ is tangent to the circle.
a. Find the area of the shaded region.
b. Find the perimeter of the shaded region.

Solution

$$
\begin{array}{lll}
\square \text { a. } & m \angle O A B=90 \\
& m \angle O B A=45 \\
& O A=A B=12
\end{array}
$$

Line tangent to a circle is \perp to the radius.

Area of $\triangle O A B=\frac{1}{2}(12)(12)=72$
Area of sector $A O C=\pi(12)^{2} \cdot \frac{45}{360}=18 \pi$.
Area of shaded region $=72-18 \pi$
Answer
b. Length of $\overparen{A C}=2 \pi(12) \cdot \frac{45}{360}=3 \pi$

Length of $B C=O B-O C=12 \sqrt{2}-12$
In a $45^{\circ}-45^{\circ}-90^{\circ} \Delta$, the hypotenuse is $\sqrt{2}$ times as long as a leg.
Perimeter of shaded region
$=$ length of $\overparen{A C}+B C+A B$
$=3 \pi+(12 \sqrt{2}-12)+12=3 \pi+12 \sqrt{2}$
Answer

Example $2 \square$ The radius of a bicycle wheel is 12 inches. What is the number of revolutions the wheel makes to travel $1 \mathrm{mile} ?(1 \mathrm{mile}=5,280 \mathrm{ft})$

Solution \quad Let $x=$ number of revolutions.
The distance traveled by a wheel $=2 \pi r \times$ number of revolutions

$$
1 \text { mile }=2 \pi(12 \text { in }) \times x
$$

$$
1 \times 5280 \times 12 \text { in }=2 \pi(12 \text { in }) x \quad 1 \text { mile }=5280 \mathrm{ft}=5280 \times 12 \text { in }
$$

$$
x=\frac{5280 \times 12}{2 \pi \times 12}=\frac{2640}{\pi} \approx 840 \quad \text { Answer }
$$

Exercises - Arc Lengths and Areas of Sectors

Questions 1 and 2 refer to the following information.

In the figure above, $\overparen{A B}$ is an arc of a circle with radius 27 cm .

1

If the length of arc $A B$ is $k \pi$, what is the value of k ?

2
If the area of sector $O A B$ is $n \pi$, what is the value of n ?

A

3

The figure above shows arcs of length $8,7,6,5$, and 4. If $m \overparen{A B}=120$, what is the degree measure of angle a ?

4

In the figure above, the radius of the circle is 8 and $m \angle A O B=120^{\circ}$. What is the length of $\overline{A B}$?
A) $8 \sqrt{2}$
B) $8 \sqrt{3}$
C) $12 \sqrt{2}$
D) $12 \sqrt{3}$

In the figure above, $O P=O Q$ and $\overline{P Q}$ is tangent to circle O. If the radius of circle O is 8 , what is the length of $\overline{Q R}$?
A) $10(\sqrt{2}-1)$
B) 6
C) $10(\sqrt{3}-1)$
D) 8

19-3. Inscribed Angles

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.

Theorem - Inscribed Angle

The measure of an inscribed angle is half the measure of its intercepted arc and half the measure of its central angle.

$$
m \angle B=\frac{1}{2} m \overparen{A C}=\frac{1}{2} m \angle A O C
$$

Corollaries to the Inscribed Angle Theorem

Corollary 1

Two inscribed angles that intercept the same arc are congruent.

$\angle A \cong \angle B$

Corollary 2

An angle inscribed in a semicircle is a right angle.

$\angle C$ is a right angle.

Corollary 3

If a quadrilateral is inscribed in a circle, its opposite angles are supplementary.

$\angle A$ is supp. to $\angle C$ $\angle B$ is supp. to $\angle D$

Example $1 \quad$ a. In the figure below, find the values of x and y.
b. In the figure below, $A C$ is a diameter and $m \overparen{A B}=72$.

Find the values of a, b, and c.
c. In the figure below, find the values of p and q.
a.

b.

c.

Solution

■ a. $x=y=32$
b. $c=72 \div 2=36$

$$
\begin{aligned}
& b=90 \\
& a+c=90 \\
& a=90-36=54
\end{aligned}
$$

c. $p+76=180$
$p=104$
$q+94=180$
$q=86$

Inscribed $\angle s$ that intercept the same arc are \cong.
The measure of an inscribed \angle is half the measure of its intercepted arc.
An \angle inscribed in a semicircle is a right \angle.
The acute $\angle s$ of a right Δ are complementary.
Substitute $c=36$ and solve for a.
If a quad. is inscribed in a circle, its opposite $\angle s$ are supplementary.
Solve for p.
If a quad. is inscribed in a circle, its opposite $\angle s$ are supplementary.
Solve for q.

Exercises - Inscribed Angles

Questions 1-4 refer to the following information.

In circle O above, $\overline{A B}$ is a diameter.

1

What is the value of y ?

2
What is the value of x ?

3

What is the value of w ?

4
What is the value of z ?
Δ

B) 80
B) 80
C) 85
D) 90

6

What is the value of y ?
A) 75

19-4. Arcs and Chords

Theorems

Theorem 1

In the same circle or in congruent circles, congruent arcs have congruent chords.

If $\overparen{A B} \cong \overparen{C D}$, then $\overline{A B} \cong \overline{C D}$. The converse is also true.

Theorem 2

If a diameter is \perp to a chord, it bisects the chord and its arc.

If diameter $\overline{C D} \perp \overline{A B}$, then $\overline{A E} \cong \overline{B E}$ and $\widehat{A C} \cong \widehat{B C}$.

Theorem 3

In the same circle or in congruent circles, chords equidistant to the center(s) are congruent.

If $O E=O F$, then $\overline{A B} \cong \overline{C D}$. The converse is also true.

Example $1 \square$ a. In the figure below, if $m \overparen{A B}=m \overparen{C D}=110$ and $C D=15$, what is the length of $\overline{A B}$?
b. In the figure below, $\overline{A B} \perp \overline{C D}$. If $A B=20$ and $C D=16$, what is the length of $\overline{O E}$?
c. In the figure below, $O E=O F=9$ and $B E=12$. What is the length of $\overline{C D}$?

Solution
\square
a. $A B=C D=15 \quad$ In the same circle \cong arcs have \cong chords.
b. $D E=\frac{1}{2} C D=8 \quad$ If a diameter is \perp to a chord, it bisects the chord.

$$
\begin{array}{ll}
O D=O B=\frac{1}{2} A B=10 & \text { In a circle, all radii are } \cong . \\
O D^{2}=D E^{2}+O E^{2} & \text { Pythagorean Theorem } \\
10^{2}=8^{2}+O E^{2} & \text { Substitution } \\
O E^{2}=36 & \\
O E=6 & \text { Simplify } .
\end{array}
$$

c. $A B=2 B E=2(12)=24$
If a diameter is \perp to a chord, it bisects the chord.
$C D=A B=24$ In the same circle, chords equidistant to the center are \cong.

Exercises - Arcs and Chords

1

In circle O above, if the radius is 13 and $P R=24$, what is the length of $Q S$?
A) 6
B) 7
C) 8
D) 9

2

In the circle above, if $R S=6, O M=5$, and $O N=4$, what is the length of $P Q$?
A) $4 \sqrt{2}$
B) 6
C) $6 \sqrt{2}$
D) $6 \sqrt{3}$

3

In circle O above, the area of the circle is 9π and $P R=\sqrt{5}$. What is the length of $Q R$?
A) 1
B) $\sqrt{2}$
C) $\sqrt{3}$
D) 2

4

In the figure above, the radius of the circle is 12 . If the length of chord $\overline{A B}$ is 18 , what is the distance between the chord and the diameter?
A) $2 \sqrt{10}$
B) $3 \sqrt{7}$
C) $4 \sqrt{5}$
D) $6 \sqrt{2}$

19-5. Circles in the Coordinate Plane

Equation of a Circle

The equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Example $1 \quad$ a. Write an equation of a circle with center $(-3,2)$ and $r=2$.
b. Find the center and radius of a circle with the equation $x^{2}+y^{2}-4 x+6 y-12=0$.
c. Write an equation of a circle that is tangent to the y-axis and has center $(4,3)$.
d. Write an equation of a circle whose endpoints of its diameter are at $(-4,8)$ and $(2,-4)$.

Solution
\square
a. $(x-h)^{2}+(y-k)^{2}=r^{2}$
Use the standard form of an equation of a circle.
$(x-(-3))^{2}+(y-2)^{2}=2^{2}$
Substitute $(-3,2)$ for (h, k) and 2 for r.
$(x+3)^{2}+(y-2)^{2}=4$
Simplify.
b. $x^{2}+y^{2}-4 x+6 y=12$

Isolate the constant onto one side.
$x^{2}-4 x+4+y^{2}+6 y+9=12+4+9$
Add $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ and $\left(6 \cdot \frac{1}{2}\right)^{2}=9$ to each side.
$(x-2)^{2}+(y+3)^{2}=25$
Factor.
The center is $(2,-3)$ and $r=\sqrt{25}=5$.
c. To visualize the circle, draw a sketch.

Since the circle has its center at $(4,3)$ and is tangent to the y-axis, its radius is 4 units.
The equation is $(x-4)^{2}+(y-3)^{2}=16$.

d. The center of a circle is the midpoint of its diameter.
$(h, k)=\left(\frac{-4+2}{2}, \frac{8+(-4)}{2}\right)=(-1,2)$
Use the distance formula to find the diameter of the circle.
$d=\sqrt{(2-(-4))^{2}+(-4-8)^{2}}=\sqrt{6^{2}+12^{2}}=\sqrt{180}=6 \sqrt{5}$
$r=\frac{1}{2}(6 \sqrt{5})=3 \sqrt{5}$
The equation of the circle is $(x+1)^{2}+(y-2)^{2}=(3 \sqrt{5})^{2}$
or $(x+1)^{2}+(y-2)^{2}=45$.

Exercises - Circles in the Coordinate Plane

1

Which of the following equations represents the equation of the circle shown in the $x y$-plane above?
A) $(x+5)^{2}+(y+2)^{2}=4$
B) $(x-5)^{2}+(y-2)^{2}=4$
C) $(x+5)^{2}+(y+2)^{2}=16$
D) $(x-5)^{2}+(y-2)^{2}=16$

2

Which of the following is an equation of a circle in the $x y$-plane with center $(-2,0)$ and a radius with endpoint $\left(0, \frac{3}{2}\right)$?
A) $x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{5}{2}$
B) $x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{25}{4}$
C) $(x+2)^{2}+y^{2}=\frac{25}{4}$
D) $(x-2)^{2}+y^{2}=\frac{25}{4}$

3

$$
x^{2}+12 x+y^{2}-4 y+15=0
$$

The equation of a circle in the $x y$-plane is shown above. Which of the following is true about the circle?
A) center $(-6,2)$, radius $=5$
B) center $(6,-2)$, radius $=5$
C) center $(-6,2)$, radius $=\sqrt{15}$
D) center $(6,-2)$, radius $=\sqrt{15}$

4
Which of the following represents an equation of a circle whose diameter has endpoints $(-8,4)$ and $(2,-6)$?
A) $(x-3)^{2}+(y-1)^{2}=50$
B) $(x+3)^{2}+(y+1)^{2}=50$
C) $(x-3)^{2}+(y-1)^{2}=25$
D) $(x+3)^{2}+(y+1)^{2}=25$

$$
x^{2}+2 x+y^{2}-4 y-9=0
$$

The equation of a circle in the $x y$-plane is shown above. If the area of the circle is $k \pi$, what is the value of k ?

Chapter 19 Practice Test

1

In the figure above, O is the center of the circle and $\overline{A B}$ is a diameter. If the length of $\overline{A C}$ is $4 \sqrt{3}$ and $m \angle B A C=30$, what is the area of circle O ?
A) 12π
B) 16π
C) 18π
D) 24π

2

In the circle above, chord $\overline{R S}$ is parallel to diameter $\overline{P Q}$. If the length of $\overline{R S}$ is $\frac{3}{4}$ of the length of $\overline{P Q}$ and the distance between the chord and the diameter is $2 \sqrt{7}$, what is the radius of the circle?
A) 6
B) $3 \sqrt{7}$
C) 8
D) $4 \sqrt{7}$

3

In the figure above, the circle is tangent to the x-axis and has center $(-4,-3)$. Which of the following equations represents the equation of the circle shown in the $x y$-plane above?
A) $(x+4)^{2}+(y+3)^{2}=9$
B) $(x-4)^{2}+(y-3)^{2}=9$
C) $(x+4)^{2}+(y+3)^{2}=3$
D) $(x-4)^{2}+(y-3)^{2}=3$

The figure above shows a semicircle with the lengths of the adjacent arcs $a, a+1, a+2$, $a+3$, and $a+4$. If the value of x is 42 , what is the value of a ?
A) 7
B) 8
C) 9
D) 10

5

In the figure above, the length of arc $\overparen{A B}$ is π. What is the area of sector $O A B$?
A) 2π
B) $\frac{5}{2} \pi$
C) 3π
D) $\frac{7}{2} \pi$

6

$$
x^{2}-4 x+y^{2}-6 x-17=0
$$

What is the area of the circle in the $x y$-plane above?
A) 20π
B) 24π
C) 26π
D) 30π

7

Which of the following is the equation of a circle that has a diameter of 8 units and is tangent to the graph of $y=2$?
A) $(x+1)^{2}+(y+2)^{2}=16$
B) $(x-1)^{2}+(y-2)^{2}=16$
C) $(x+2)^{2}+(y+1)^{2}=16$
D) $(x-2)^{2}+(y-1)^{2}=16$

8

In the figure above, rectangle $O P Q R$ is inscribed in a quarter circle that has a radius of 9 . If $P Q=7$, what is the area of rectangle $O P Q R$?
A) $24 \sqrt{2}$
B) $26 \sqrt{2}$
C) $28 \sqrt{2}$
D) $30 \sqrt{2}$

In a circle with center O, the central angle has a measure of $\frac{2 \pi}{3}$ radians. The area of the sector formed by central angle $A O B$ is what fraction of the area of the circle?

10
A wheel with a radius of 2.2 feet is turning at a constant rate of 400 revolutions per minute on a road. If the wheel traveled $k \pi$ miles in one hour what is the value of k ? $(1$ mile $=5,280$ feet $)$

Answer Key

Section 19-1

1. 38
2. 38
3. 135
4. 9
5. D
6. C

Section 19-2
1.6
2. 81
3. 32
4. B
5. D

Section 19-3

1. 48
2. 24
3. 90
4. 32
5. D
6. B

Section 19-4

1. C
2. C
3. A
4. B

Section 19-5

1. D
2. C
3. A
4. B
5. 14

Chapter 19 Practice Test

1. B
2. C
3. A
4. D
5. B
6. D
7. A
8. C
9. $\frac{1}{3}$
10. 20

Answers and Explanations

Section 19-1

1. 38

$$
\begin{array}{ll}
\overline{P D} \perp \overline{O D} & \\
m \angle O D E=90 & \\
\text { Tangent to a } \odot \text { is } \perp \text { to radius. } \\
m \angle O D C=90-52 &
\end{array}
$$

2. 38

$$
\begin{aligned}
O C=O D & \text { In a } \odot \text { all radii are } \cong . \\
m \angle O C D & =m \angle O D C \text { Isosceles Triangle Theorem } \\
& =38
\end{aligned}
$$

3. 135

If a line is tangent to a circle, the line is \perp to the radius at the point of tangency. Therefore, $m \angle O D P=m \angle O A P=90$.
The sum of the measures of interior angles of quadrilateral is 360 . Therefore,
$m \angle A O D+m \angle O D P+m \angle O A P+m \angle P=360$.
$m \angle A O D+90+90+45=360$ Substitution
$m \angle A O D+225=360 \quad$ Simplify .
$m \angle A O D=135$
4. 9

Tangents to a circle from the same exterior point are congruent. Therefore,

$$
P D=P A=9 .
$$

5. D

Since tangents to a circle from the same exterior point are congruent, $Q A=Q C=6, P A=P B=12$, and $R B=R C=9.5$. Therefore,
Perimeter of $\triangle P Q R=2(6+12+9.5)=55$
6. C

$$
\begin{aligned}
& O R=O P=10 \quad \text { In a } \odot \text { all radii are } \cong . \\
& O Q=O R+R Q \quad \text { Segment Addition Postulate } \\
& =10+16=26 \\
& P Q^{2}+O P^{2}=O Q^{2} \quad \text { Pythagorean Theorem } \\
& P Q^{2}+10^{2}=26^{2} \quad \text { Substitution } \\
& P Q^{2}=26^{2}-10^{2}=576 \\
& P Q=\sqrt{576}=24
\end{aligned}
$$

Section 19-2

1. 6

Length of arc $A B=2 \pi r \cdot \frac{m \angle A O B}{360}$
$=2 \pi(27) \cdot \frac{40}{360}=6 \pi$
Thus, $k=6$.
2. 81

Area of sector $O A B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
$=\pi(27)^{2} \cdot \frac{40}{360}=81 \pi$
Thus, $n=81$.
3. 32

The length of arc $A B=8+7+6+5+4=30$ In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.
Therefore, $\frac{\text { length of arc } A B}{120^{\circ}}=\frac{8}{a^{\circ}}$.

$$
\begin{array}{ll}
\frac{30}{120}=\frac{8}{a} & \text { Substitution } \\
30 a=120 \times 8 & \text { Cross Products } \\
a=32 &
\end{array}
$$

4. B

Draw $\overline{O C}$ perpendicular to $\overline{A B}$. Since $\triangle A O B$ is an isosceles triangle, $\overline{O C}$ bisects $\angle A O B$.
$m \angle A O C=m \angle B O C=\frac{1}{2} m \angle A O B=\frac{1}{2}(120)=60$.
$\triangle B O C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{aligned}
O C & =\frac{1}{2} O B=\frac{1}{2}(8)=4 \\
B C & =\sqrt{3} \cdot O C=4 \sqrt{3} \\
A B & =2 B C=2 \times 4 \sqrt{3}=8 \sqrt{3}
\end{aligned}
$$

5. D

Let T be a point of tangency. Then $\overline{P Q} \perp \overline{O T}$, because a line tangent to a circle is \perp to the radius at the point of tangency.
$\triangle O Q T$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
$O T=O R=8 \quad$ In a \odot all radii are \cong.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore,

$$
\begin{aligned}
& O Q=2 O T=2(8)=16 \\
& Q R=O Q-O R=16-8=8
\end{aligned}
$$

Section 19-3

1. 48

The measure of a minor arc is the measure of its central angle. Therefore, $y=48$.
2. 24

The measure of an inscribed angle is half the measure of its intercepted arc.
Therefore, $x=\frac{1}{2}(48)=24$.
3. 90

An angle inscribed in a semicircle is a right angle. Therefore, $w=90$.
4. 32

The measure of a semicircle is 180 , thus

$$
m \widehat{A C B}=180
$$

The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs, thus

$$
\begin{array}{ll}
m \overparen{A C B}=m \overparen{A C}+m \overparen{C D}+m \overparen{D B} \\
180=100+z+48 & \text { Substitution } \\
180=148+z & \text { Simplify } \\
32=z &
\end{array}
$$

5. D

If a quadrilateral is inscribed in a circle, its opposite angles are supplementary. Therefore, $x+80=180$.
$x=100$
6. B

The measure of an inscribed angle is half the measure of its intercepted arc. Therefore,

$$
\begin{array}{ll}
m \angle R S P=\frac{1}{2}(m \overparen{P Q}+m \overparen{Q R}) . \\
75=\frac{1}{2}(70+y) & \text { Substitution } \\
2 \cdot 75=2 \cdot \frac{1}{2}(70+y) & \text { Multiply each side by } 2 . \\
150=70+y & \text { Simplify. } \\
80=y &
\end{array}
$$

Section 19-4

1. C

If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,
$P S=\frac{1}{2} P R=\frac{1}{2}(24)=12$.
The radius of the circle is 13 , thus $O P=O Q=13$.
Draw $\overline{O P}$.

$$
\begin{array}{ll}
O S^{2}+P S^{2}=O P^{2} & \text { Pythagorean Theorem } \\
O S^{2}+12^{2}=13^{2} & \text { Substitution } \\
O S^{2}=13^{2}-12^{2}=25 & \\
O S=\sqrt{25}=5 & \\
Q S=O Q-O S & \\
\quad=13-5 & \\
\quad=8 &
\end{array}
$$

2. C

Draw $\overline{O S}$ and $\overline{O Q}$.
If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

$$
\begin{array}{ll}
M S=\frac{1}{2} R S=\frac{1}{2}(6)=3 \text { and } P Q=2 N Q . \\
O S^{2}=M S^{2}+O M^{2} & \text { Pythagorean Theorem } \\
O S^{2}=3^{2}+5^{2} & \text { Substitution } \\
O S^{2}=34 & \\
O S=\sqrt{34} & \\
O Q=O S=\sqrt{34} & \text { In a } \odot \text { all radii are } \cong . \\
O Q^{2}=O N^{2}+N Q^{2} & \text { Pythagorean Theorem } \\
\left(\sqrt{34}^{2}=4^{2}+N Q^{2}\right. & \text { Substitution } \\
34=16+N Q^{2} & \\
18=N Q^{2} & \\
N Q=\sqrt{18}=3 \sqrt{2} & \\
P Q=2 N Q=2(3 \sqrt{2})=6 \sqrt{2}
\end{array}
$$

3. A

Area of the circle $=\pi r^{2}=9 \pi$.
$\Rightarrow r^{2}=9 \Rightarrow r=3$
Therefore, $O P=O Q=3$.
$\begin{array}{ll}O R^{2}+P R^{2}=O P^{2} & \text { Pythagorean Theorem } \\ O R^{2}+(\sqrt{5})^{2}=3^{2} & \text { Substitution } \\ O R^{2}+5=9 & \text { Simplify. } \\ O R^{2}=9-5=4 & \\ O R=\sqrt{4}=2 & \\ Q R=O Q-O R=3-2=1 & \end{array}$
4. B

Draw $\overline{O A}$ and $\overline{O B}$. Draw $\overline{O C} \perp$ to $\overline{A B}$. $O C$ is the distance between the chord and the diameter.

$$
\begin{array}{ll}
B C & =\frac{1}{2} A B=\frac{1}{2}(18)=9 \\
& \\
O C^{2}+B C^{2}=O B^{2} & \text { Pythagorean Theorem } \\
O C^{2}+9^{2}=12^{2} & \text { Substitution } \\
O C^{2}=12^{2}-9^{2}=63 & \\
O C & =\sqrt{63} \\
& =\sqrt{9} \cdot \sqrt{7} \\
& =3 \sqrt{7}
\end{array}
$$

Section 19-5

1. D

The equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
The center of the circle shown above is $(5,2)$ and the radius is 4 . Therefore, the equation of the circle is $(x-5)^{2}+(y-2)^{2}=4^{2}$.
2. C

Use the distance formula to find the radius.

$$
\begin{array}{rlrl}
r & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \left(x_{1}, y_{1}\right)=(-2,0) \\
& =\sqrt{(0-(-2))^{2}+\left(\frac{3}{2}-0\right)^{2}} & & \left(x_{2}, y_{2}\right)=\left(0, \frac{3}{2}\right) \\
& =\sqrt{4+\frac{9}{4}} & & \text { Simplify. } \\
& =\sqrt{\frac{16}{4}+\frac{9}{4}}=\sqrt{\frac{25}{4}} &
\end{array}
$$

Therefore, the equation of the circle is
$(x-(-2))^{2}+(y-0)^{2}=\left(\sqrt{\frac{25}{4}}\right)^{2}$.
Choice C is correct.
3. A
$x^{2}+12 x+y^{2}-4 y+15=0$
Isolate the constant onto one side.
$x^{2}+12 x+y^{2}-4 y=-15$
Add $\left(12 \cdot \frac{1}{2}\right)^{2}=36$ and $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ to each side.
$\left(x^{2}+12 x+36\right)+\left(y^{2}-4 y+4\right)=-15+36+4$
Complete the square.
$(x+6)^{2}+(y-2)^{2}=25$
The center of the circle is $(-6,2)$ and the radius is $\sqrt{25}$, or 5 .
4. B

The center of the circle is the midpoint of the diameter. Use the midpoint formula to find the center of the circle.
$(h, k)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{-8+2}{2}, \frac{4+(-6)}{2}\right)=(-3,-1)$
The radius is half the distance of the diameter.
Use the distance formula to find the diameter.
$d=\sqrt{(2-(-8))^{2}+(-6-4)^{2}}=\sqrt{100+100}$
$=\sqrt{200}=\sqrt{100} \cdot \sqrt{2}=10 \sqrt{2}$
$r=\frac{1}{2} d=\frac{1}{2}(10 \sqrt{2})=5 \sqrt{2}$
Therefore, the equation of the circle is
$(x-(-3))^{2}+(y-(-1))^{2}=(5 \sqrt{2})^{2}$, or
$(x+3)^{2}+(y+1)^{2}=50$.
5. 14
$x^{2}+2 x+y^{2}-4 y-9=0$
Isolate the constant onto one side.
$x^{2}+2 x+y^{2}-4 y=9$
Add $\left(2 \cdot \frac{1}{2}\right)^{2}=1$ and $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ to each side.
$\left(x^{2}+2 x+1\right)+\left(y^{2}-4 y+4\right)=9+1+4$
Complete the square.
$(x+1)^{2}+(y-2)^{2}=14$
The radius of the circle is $\sqrt{14}$.
Area of the circle is $\pi r^{2}=\pi(\sqrt{14})^{2}=14 \pi$.
Therefore, $k=14$.

Chapter 19 Practice Test

1. B

An angle inscribed in a semicircle is a right angle. Therefore, $\angle A C B=90$.
So, $\triangle A B C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{array}{lr}
A C=\sqrt{3} B C & \\
4 \sqrt{3}=\sqrt{3} B C & A C=4 \sqrt{3} \\
4=B C & \\
A B=2 B C=2(4)=8 &
\end{array}
$$

Therefore, the radius of circle O is 4 .
Area of circle $O=\pi(4)^{2}=16 \pi$
2. C

Draw $\overline{O R}$ and $\overline{O T}$ as shown above. Let the radius of the circle be r, then $O Q=O R=r$.
Since the ratio of $R S$ to $Q P$ is 3 to 4 , the ratio of $R T$ to $O Q$ is also 3 to 4 .
Therefore, $R T=\frac{3}{4} O Q=\frac{3}{4} r$.
$O T$ is the distance between the chord and the
diameter, which is given as $2 \sqrt{7}$.
$O R^{2}=R T^{2}+O T^{2} \quad$ Pythagorean Theorem
$r^{2}=\left(\frac{3}{4} r\right)^{2}+(2 \sqrt{7})^{2} \quad$ Substitution
$r^{2}=\frac{9}{16} r^{2}+28 \quad$ Simplify.
$r^{2}-\frac{9}{16} r^{2}=28$
$\frac{7}{16} r^{2}=28$
$\frac{16}{7} \cdot \frac{7}{16} r^{2}=\frac{16}{7} \cdot 28$
$r^{2}=64$
$r=\sqrt{64}=8$
3. A

If the center of the circle is $(-4,-3)$ and the circle is tangent to the x-axis, the radius is 3 .
The equation is $(x-(-4))^{2}+(y-(-3))^{2}=3^{2}$, or $(x+4)^{2}+(y+3)^{2}=9$.
4. D

The arc length of the semicircle is $(a+4)+(a+3)+(a+2)+(a+1)+a=5 a+10$.
In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.
Therefore, $\frac{\text { arc length of semicircle }}{180^{\circ}}=\frac{a+4}{x^{\circ}}$.

$$
\begin{array}{ll}
\frac{5 a+10}{180}=\frac{a+4}{42} & \text { Substitution } \\
42(5 a+10)=180(a+4) & \text { Cross Products } \\
210 a+420=180 a+720 & \\
30 a=300 & \\
a=10 &
\end{array}
$$

5. B

Length of arc $A B=2 \pi r \cdot \frac{m \angle A O B}{360}$
$=2 \pi r \cdot \frac{36}{360}=\frac{\pi r}{5}$
Since the length of the arc is given as π,
$\frac{\pi r}{5}=\pi$. Solving the equation for r gives $r=5$.
Area of sector $A O B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
$=\pi(5)^{2} \cdot \frac{36}{360}=\frac{5}{2} \pi$
6. D

$$
\begin{aligned}
& x^{2}-4 x+y^{2}-6 x-17=0 \\
& x^{2}-4 x+y^{2}-6 x=17
\end{aligned}
$$

To complete the square, add $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ and
$\left(-6 \cdot \frac{1}{2}\right)^{2}=9$ to each side.
$x^{2}-4 x+4+y^{2}-6 x+9=17+4+9$
$(x-2)^{2}+(y-3)^{2}=30$
The radius of the circle is $\sqrt{30}$, the area of the circle is $\pi(\sqrt{30})^{2}=30 \pi$
7. A

If the diameter of the circle is 8 units, the radius of the circle is 4 units. Since the radius of the circle is 4 units, the y-coordinate of the center has to be 4 units above or below $y=2$.
The y-coordinate of the center has to be either 6 or -2 . Among the answer choices, only choice A has -2 as the y-coordinate.
No other answer choice has 6 or -2 as the y-coordinate of the center.
Choice A is correct.
8. C

Draw $\overline{O Q}$. Since $\overline{O Q}$ is a radius, $O Q=9$.
$O P^{2}+P Q^{2}=O Q^{2}$
Pythagorean Theorem

$$
\begin{aligned}
& O P^{2}+7^{2}=9^{2} \quad \text { Substitution } \\
& O P^{2}=9^{2}-7^{2}=32 \\
& O P=\sqrt{32}=\sqrt{16} \cdot \sqrt{2}=4 \sqrt{2}
\end{aligned}
$$

Area of rectangle $O P Q R=O P \times P Q$
$=4 \sqrt{2} \times 7=28 \sqrt{2}$
9. $\frac{1}{3}$

Area of sector $A O B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
The area of a sector is the fractional part of the area of a circle. The area of a sector formed by $\frac{2 \pi}{3}$ radians of arc is $\frac{2 \pi / 3}{2 \pi}$, or $\frac{1}{3}$, of the area of the circle.
10.20

The distance the wheel travels in 1 minute is equal to the product of the circumference of the wheel and the number of revolutions per minute. The distance the wheel travels in 1 minute
$=2 \pi r \times$ the number of revolutions per minute
$=2 \pi(2.2 \mathrm{ft}) \times 400=1,760 \pi \mathrm{ft}$
Total distance traveled in 1 hour
$=1,760 \pi \mathrm{ft} \times 60=105,600 \pi \mathrm{ft}$
$=105,600 \pi \mathrm{ft} \times \frac{1 \mathrm{mile}}{5,280 \mathrm{ft}}=20 \pi \mathrm{miles}$
Thus, $k=20$.

