Answer Key

Section 19-1

1. 38
2. 38
3. 135
4. 9
5. D
6. C

Section 19-2
1.6
2. 81
3. 32
4. B
5. D

Section 19-3

1. 48
2. 24
3. 90
4. 32
5. D
6. B

Section 19-4

1. C
2. C
3. A
4. B

Section 19-5

1. D
2. C
3. A
4. B
5. 14

Chapter 19 Practice Test

1. B
2. C
3. A
4. D
5. B
6. D
7. A
8. C
9. $\frac{1}{3}$
10. 20

Answers and Explanations

Section 19-1

1. 38

$$
\begin{array}{ll}
\overline{P D} \perp \overline{O D} & \\
m \angle O D E=90 & \\
\text { Tangent to a } \odot \text { is } \perp \text { to radius. } \\
m \angle O D C=90-52 &
\end{array}
$$

2. 38

$$
\begin{aligned}
O C=O D & \text { In a } \odot \text { all radii are } \cong . \\
m \angle O C D & =m \angle O D C \text { Isosceles Triangle Theorem } \\
& =38
\end{aligned}
$$

3. 135

If a line is tangent to a circle, the line is \perp to the radius at the point of tangency. Therefore, $m \angle O D P=m \angle O A P=90$.
The sum of the measures of interior angles of quadrilateral is 360 . Therefore,
$m \angle A O D+m \angle O D P+m \angle O A P+m \angle P=360$.
$m \angle A O D+90+90+45=360$ Substitution
$m \angle A O D+225=360 \quad$ Simplify .
$m \angle A O D=135$
4. 9

Tangents to a circle from the same exterior point are congruent. Therefore,

$$
P D=P A=9 .
$$

5. D

Since tangents to a circle from the same exterior point are congruent, $Q A=Q C=6, P A=P B=12$, and $R B=R C=9.5$. Therefore,
Perimeter of $\triangle P Q R=2(6+12+9.5)=55$
6. C

$$
\begin{aligned}
& O R=O P=10 \quad \text { In a } \odot \text { all radii are } \cong . \\
& O Q=O R+R Q \quad \text { Segment Addition Postulate } \\
& =10+16=26 \\
& P Q^{2}+O P^{2}=O Q^{2} \quad \text { Pythagorean Theorem } \\
& P Q^{2}+10^{2}=26^{2} \quad \text { Substitution } \\
& P Q^{2}=26^{2}-10^{2}=576 \\
& P Q=\sqrt{576}=24
\end{aligned}
$$

Section 19-2

1. 6

Length of arc $A B=2 \pi r \cdot \frac{m \angle A O B}{360}$
$=2 \pi(27) \cdot \frac{40}{360}=6 \pi$
Thus, $k=6$.
2. 81

Area of sector $O A B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
$=\pi(27)^{2} \cdot \frac{40}{360}=81 \pi$
Thus, $n=81$.
3. 32

The length of arc $A B=8+7+6+5+4=30$ In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.
Therefore, $\frac{\text { length of arc } A B}{120^{\circ}}=\frac{8}{a^{\circ}}$.

$$
\begin{array}{ll}
\frac{30}{120}=\frac{8}{a} & \text { Substitution } \\
30 a=120 \times 8 & \text { Cross Products } \\
a=32 &
\end{array}
$$

4. B

Draw $\overline{O C}$ perpendicular to $\overline{A B}$. Since $\triangle A O B$ is an isosceles triangle, $\overline{O C}$ bisects $\angle A O B$.
$m \angle A O C=m \angle B O C=\frac{1}{2} m \angle A O B=\frac{1}{2}(120)=60$.
$\triangle B O C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{aligned}
O C & =\frac{1}{2} O B=\frac{1}{2}(8)=4 \\
B C & =\sqrt{3} \cdot O C=4 \sqrt{3} \\
A B & =2 B C=2 \times 4 \sqrt{3}=8 \sqrt{3}
\end{aligned}
$$

5. D

Let T be a point of tangency. Then $\overline{P Q} \perp \overline{O T}$, because a line tangent to a circle is \perp to the radius at the point of tangency.
$\triangle O Q T$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
$O T=O R=8 \quad$ In a \odot all radii are \cong.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore,

$$
\begin{aligned}
& O Q=2 O T=2(8)=16 \\
& Q R=O Q-O R=16-8=8
\end{aligned}
$$

Section 19-3

1. 48

The measure of a minor arc is the measure of its central angle. Therefore, $y=48$.
2. 24

The measure of an inscribed angle is half the measure of its intercepted arc.
Therefore, $x=\frac{1}{2}(48)=24$.
3. 90

An angle inscribed in a semicircle is a right angle. Therefore, $w=90$.
4. 32

The measure of a semicircle is 180 , thus

$$
m \widehat{A C B}=180
$$

The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs, thus

$$
\begin{array}{ll}
m \overparen{A C B}=m \overparen{A C}+m \overparen{C D}+m \overparen{D B} \\
180=100+z+48 & \text { Substitution } \\
180=148+z & \text { Simplify } \\
32=z &
\end{array}
$$

5. D

If a quadrilateral is inscribed in a circle, its opposite angles are supplementary. Therefore, $x+80=180$.
$x=100$
6. B

The measure of an inscribed angle is half the measure of its intercepted arc. Therefore,

$$
\begin{array}{ll}
m \angle R S P=\frac{1}{2}(m \overparen{P Q}+m \overparen{Q R}) . \\
75=\frac{1}{2}(70+y) & \text { Substitution } \\
2 \cdot 75=2 \cdot \frac{1}{2}(70+y) & \text { Multiply each side by } 2 . \\
150=70+y & \text { Simplify. } \\
80=y &
\end{array}
$$

Section 19-4

1. C

If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,
$P S=\frac{1}{2} P R=\frac{1}{2}(24)=12$.
The radius of the circle is 13 , thus $O P=O Q=13$.
Draw $\overline{O P}$.

$$
\begin{array}{ll}
O S^{2}+P S^{2}=O P^{2} & \text { Pythagorean Theorem } \\
O S^{2}+12^{2}=13^{2} & \text { Substitution } \\
O S^{2}=13^{2}-12^{2}=25 & \\
O S=\sqrt{25}=5 & \\
Q S=O Q-O S & \\
\quad=13-5 & \\
\quad=8 &
\end{array}
$$

2. C

Draw $\overline{O S}$ and $\overline{O Q}$.
If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

$$
\begin{array}{ll}
M S=\frac{1}{2} R S=\frac{1}{2}(6)=3 \text { and } P Q=2 N Q . \\
O S^{2}=M S^{2}+O M^{2} & \text { Pythagorean Theorem } \\
O S^{2}=3^{2}+5^{2} & \text { Substitution } \\
O S^{2}=34 & \\
O S=\sqrt{34} & \\
O Q=O S=\sqrt{34} & \text { In a } \odot \text { all radii are } \cong . \\
O Q^{2}=O N^{2}+N Q^{2} & \text { Pythagorean Theorem } \\
\left(\sqrt{34}^{2}=4^{2}+N Q^{2}\right. & \text { Substitution } \\
34=16+N Q^{2} & \\
18=N Q^{2} & \\
N Q=\sqrt{18}=3 \sqrt{2} & \\
P Q=2 N Q=2(3 \sqrt{2})=6 \sqrt{2}
\end{array}
$$

3. A

Area of the circle $=\pi r^{2}=9 \pi$.
$\Rightarrow r^{2}=9 \Rightarrow r=3$
Therefore, $O P=O Q=3$.
$\begin{array}{ll}O R^{2}+P R^{2}=O P^{2} & \text { Pythagorean Theorem } \\ O R^{2}+(\sqrt{5})^{2}=3^{2} & \text { Substitution } \\ O R^{2}+5=9 & \text { Simplify. } \\ O R^{2}=9-5=4 & \\ O R=\sqrt{4}=2 & \\ Q R=O Q-O R=3-2=1 & \end{array}$
4. B

Draw $\overline{O A}$ and $\overline{O B}$. Draw $\overline{O C} \perp$ to $\overline{A B}$. $O C$ is the distance between the chord and the diameter.

$$
\begin{array}{ll}
B C & =\frac{1}{2} A B=\frac{1}{2}(18)=9 \\
& \\
O C^{2}+B C^{2}=O B^{2} & \text { Pythagorean Theorem } \\
O C^{2}+9^{2}=12^{2} & \text { Substitution } \\
O C^{2}=12^{2}-9^{2}=63 & \\
O C & =\sqrt{63} \\
& =\sqrt{9} \cdot \sqrt{7} \\
& =3 \sqrt{7}
\end{array}
$$

Section 19-5

1. D

The equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
The center of the circle shown above is $(5,2)$ and the radius is 4 . Therefore, the equation of the circle is $(x-5)^{2}+(y-2)^{2}=4^{2}$.
2. C

Use the distance formula to find the radius.

$$
\begin{array}{rlrl}
r & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \left(x_{1}, y_{1}\right)=(-2,0) \\
& =\sqrt{(0-(-2))^{2}+\left(\frac{3}{2}-0\right)^{2}} & & \left(x_{2}, y_{2}\right)=\left(0, \frac{3}{2}\right) \\
& =\sqrt{4+\frac{9}{4}} & & \text { Simplify. } \\
& =\sqrt{\frac{16}{4}+\frac{9}{4}}=\sqrt{\frac{25}{4}} &
\end{array}
$$

Therefore, the equation of the circle is
$(x-(-2))^{2}+(y-0)^{2}=\left(\sqrt{\frac{25}{4}}\right)^{2}$.
Choice C is correct.
3. A
$x^{2}+12 x+y^{2}-4 y+15=0$
Isolate the constant onto one side.
$x^{2}+12 x+y^{2}-4 y=-15$
Add $\left(12 \cdot \frac{1}{2}\right)^{2}=36$ and $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ to each side.
$\left(x^{2}+12 x+36\right)+\left(y^{2}-4 y+4\right)=-15+36+4$
Complete the square.
$(x+6)^{2}+(y-2)^{2}=25$
The center of the circle is $(-6,2)$ and the radius is $\sqrt{25}$, or 5 .
4. B

The center of the circle is the midpoint of the diameter. Use the midpoint formula to find the center of the circle.
$(h, k)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{-8+2}{2}, \frac{4+(-6)}{2}\right)=(-3,-1)$
The radius is half the distance of the diameter.
Use the distance formula to find the diameter.
$d=\sqrt{(2-(-8))^{2}+(-6-4)^{2}}=\sqrt{100+100}$
$=\sqrt{200}=\sqrt{100} \cdot \sqrt{2}=10 \sqrt{2}$
$r=\frac{1}{2} d=\frac{1}{2}(10 \sqrt{2})=5 \sqrt{2}$
Therefore, the equation of the circle is
$(x-(-3))^{2}+(y-(-1))^{2}=(5 \sqrt{2})^{2}$, or
$(x+3)^{2}+(y+1)^{2}=50$.
5. 14
$x^{2}+2 x+y^{2}-4 y-9=0$
Isolate the constant onto one side.
$x^{2}+2 x+y^{2}-4 y=9$
Add $\left(2 \cdot \frac{1}{2}\right)^{2}=1$ and $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ to each side.
$\left(x^{2}+2 x+1\right)+\left(y^{2}-4 y+4\right)=9+1+4$
Complete the square.
$(x+1)^{2}+(y-2)^{2}=14$
The radius of the circle is $\sqrt{14}$.
Area of the circle is $\pi r^{2}=\pi(\sqrt{14})^{2}=14 \pi$.
Therefore, $k=14$.

Chapter 19 Practice Test

1. B

An angle inscribed in a semicircle is a right angle. Therefore, $\angle A C B=90$.
So, $\triangle A B C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{array}{lr}
A C=\sqrt{3} B C & \\
4 \sqrt{3}=\sqrt{3} B C & A C=4 \sqrt{3} \\
4=B C & \\
A B=2 B C=2(4)=8 &
\end{array}
$$

Therefore, the radius of circle O is 4 .
Area of circle $O=\pi(4)^{2}=16 \pi$
2. C

Draw $\overline{O R}$ and $\overline{O T}$ as shown above. Let the radius of the circle be r, then $O Q=O R=r$.
Since the ratio of $R S$ to $Q P$ is 3 to 4 , the ratio of $R T$ to $O Q$ is also 3 to 4 .
Therefore, $R T=\frac{3}{4} O Q=\frac{3}{4} r$.
$O T$ is the distance between the chord and the
diameter, which is given as $2 \sqrt{7}$.
$O R^{2}=R T^{2}+O T^{2} \quad$ Pythagorean Theorem
$r^{2}=\left(\frac{3}{4} r\right)^{2}+(2 \sqrt{7})^{2} \quad$ Substitution
$r^{2}=\frac{9}{16} r^{2}+28 \quad$ Simplify.
$r^{2}-\frac{9}{16} r^{2}=28$
$\frac{7}{16} r^{2}=28$
$\frac{16}{7} \cdot \frac{7}{16} r^{2}=\frac{16}{7} \cdot 28$
$r^{2}=64$
$r=\sqrt{64}=8$
3. A

If the center of the circle is $(-4,-3)$ and the circle is tangent to the x-axis, the radius is 3 .
The equation is $(x-(-4))^{2}+(y-(-3))^{2}=3^{2}$, or $(x+4)^{2}+(y+3)^{2}=9$.
4. D

The arc length of the semicircle is $(a+4)+(a+3)+(a+2)+(a+1)+a=5 a+10$.
In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.
Therefore, $\frac{\text { arc length of semicircle }}{180^{\circ}}=\frac{a+4}{x^{\circ}}$.

$$
\begin{array}{ll}
\frac{5 a+10}{180}=\frac{a+4}{42} & \text { Substitution } \\
42(5 a+10)=180(a+4) & \text { Cross Products } \\
210 a+420=180 a+720 & \\
30 a=300 & \\
a=10 &
\end{array}
$$

5. B

Length of arc $A B=2 \pi r \cdot \frac{m \angle A O B}{360}$
$=2 \pi r \cdot \frac{36}{360}=\frac{\pi r}{5}$
Since the length of the arc is given as π,
$\frac{\pi r}{5}=\pi$. Solving the equation for r gives $r=5$.
Area of sector $A O B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
$=\pi(5)^{2} \cdot \frac{36}{360}=\frac{5}{2} \pi$
6. D

$$
\begin{aligned}
& x^{2}-4 x+y^{2}-6 x-17=0 \\
& x^{2}-4 x+y^{2}-6 x=17
\end{aligned}
$$

To complete the square, add $\left(-4 \cdot \frac{1}{2}\right)^{2}=4$ and
$\left(-6 \cdot \frac{1}{2}\right)^{2}=9$ to each side.
$x^{2}-4 x+4+y^{2}-6 x+9=17+4+9$
$(x-2)^{2}+(y-3)^{2}=30$
The radius of the circle is $\sqrt{30}$, the area of the circle is $\pi(\sqrt{30})^{2}=30 \pi$
7. A

If the diameter of the circle is 8 units, the radius of the circle is 4 units. Since the radius of the circle is 4 units, the y-coordinate of the center has to be 4 units above or below $y=2$.
The y-coordinate of the center has to be either 6 or -2 . Among the answer choices, only choice A has -2 as the y-coordinate.
No other answer choice has 6 or -2 as the y-coordinate of the center.
Choice A is correct.
8. C

Draw $\overline{O Q}$. Since $\overline{O Q}$ is a radius, $O Q=9$.
$O P^{2}+P Q^{2}=O Q^{2}$
Pythagorean Theorem

$$
\begin{aligned}
& O P^{2}+7^{2}=9^{2} \quad \text { Substitution } \\
& O P^{2}=9^{2}-7^{2}=32 \\
& O P=\sqrt{32}=\sqrt{16} \cdot \sqrt{2}=4 \sqrt{2}
\end{aligned}
$$

Area of rectangle $O P Q R=O P \times P Q$
$=4 \sqrt{2} \times 7=28 \sqrt{2}$
9. $\frac{1}{3}$

Area of sector $A O B=\pi r^{2} \cdot \frac{m \angle A O B}{360}$
The area of a sector is the fractional part of the area of a circle. The area of a sector formed by $\frac{2 \pi}{3}$ radians of arc is $\frac{2 \pi / 3}{2 \pi}$, or $\frac{1}{3}$, of the area of the circle.
10.20

The distance the wheel travels in 1 minute is equal to the product of the circumference of the wheel and the number of revolutions per minute. The distance the wheel travels in 1 minute
$=2 \pi r \times$ the number of revolutions per minute
$=2 \pi(2.2 \mathrm{ft}) \times 400=1,760 \pi \mathrm{ft}$
Total distance traveled in 1 hour
$=1,760 \pi \mathrm{ft} \times 60=105,600 \pi \mathrm{ft}$
$=105,600 \pi \mathrm{ft} \times \frac{1 \mathrm{mile}}{5,280 \mathrm{ft}}=20 \pi \mathrm{miles}$
Thus, $k=20$.

