CHAPTER 18
 Polygons and Quadrilaterals

18-1. Parallelograms

A parallelogram (\square) is a quadrilateral with two pairs of parallel opposite sides.
In $\square A B C D, \overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$.

Properties of Parallelogram

Opposite sides are congruent.
Opposite angles are congruent.

$$
\overline{A B} \cong \overline{C D} \text { and } \overline{B C} \cong \overline{A D}
$$

Consecutive angles are supplementary. $\angle B A D \cong \angle B C D$ and $\angle A B C \cong \angle A D C$

The diagonals bisect each other.
$m \angle A B C+m \angle B A D=180$ and $m \angle A D C+m \angle B C D=180$
$A E=C E$ and $B E=D E$

A rhombus is a parallelogram with four sides of equal measure. The diagonals of a rhombus are perpendicular to each other, and each diagonal of a rhombus bisects a pair of opposite angles.
In rhombus $A B C D, A B=B C=C D=D A, A C \perp B D$, $m \angle 1=m \angle 2=m \angle 5=m \angle 6$, and $m \angle 3=m \angle 4=m \angle 7=m \angle 8$.

Theorem

The area of a parallelogram equals the product of a base and the height to that base. $\boldsymbol{A}=\boldsymbol{b} \cdot \boldsymbol{h}$
The area of a rhombus is half the product of the lengths of its diagonals $\left(d_{1}\right.$ and $\left.d_{2}\right) . \quad \boldsymbol{A}=\frac{1}{2} \boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2}$

Example $1 \quad \square$ Find the values of the variables in the parallelogram shown at the right.

Solution

$$
\begin{aligned}
& \text { ㅁ } \\
& \quad x+11=3 x-5 \\
& 16=2 x \Rightarrow x=8 \\
& y+6=2 y-4 \\
& y=10
\end{aligned}
$$

Opposite sides of \square are \cong.
The diagonals of \quad bisect each other.

Example $2 \quad \square \quad$ Find the area of parallelogram $P Q R S$ shown at the right.

Solution
\square Notice that $\triangle P Q T$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

$P T=\frac{1}{2} P Q=\frac{1}{2}(10)=5$
$Q T=\sqrt{3} P T=\sqrt{3}(5)=5 \sqrt{3}$
Area of $P Q R S=b \cdot h=12 \cdot 5 \sqrt{3}=60 \sqrt{3}$

Exercise - Parallelograms

In $\square P Q R S$ above, $P T=x+2 y, S T=8 x-y$, $P R=32, T Q=26, m \angle 1=6 a, m \angle 2=10 a$, $m \angle 3=a^{2}-7$ and $m \angle P R S=4 a$.

1

What is the value of x ?

2
What is the value of y ?

3

What is the measure of $\angle P Q R$?

4
What is the measure of $\angle Q R S$?

5
What is the measure of $\angle Q T R$?

6

What is the area of rhombus $A B C D$ above?

7

In the figure above, $P Q R S$ is a parallelogram and $P T S$ is a right triangle. What is the area of the parallelogram $P Q R S$?

18-2. Rectangles, Squares, and Trapezoids

A rectangle is a quadrilateral with four right angles. The diagonals of a rectangle are congruent and bisect each other. The diagonals divide the rectangle into four triangles of equal area.
In rectangle $A B C D, A E=B E=C E=D E$.

Area of $\triangle A B E=$ Area of $\triangle B C E=$ Area of $\triangle C D E=$ Area of $\triangle D A E$

If a quadrilateral is both a rhombus and a rectangle, it is a square. A square has four right angles and four congruent sides. The diagonals of a square are congruent and bisect each other.
In square $A B C D, A B=B C=C D=D A, \overline{A B} \perp \overline{B C} \perp \overline{C D} \perp \overline{D A}$, and $A E=C E=B E=D E$.

A trapezoid is a quadrilateral with exactly one pair of parallel sides.
The midsegment of a trapezoid is parallel to the bases and the length of the midsegment is the average of the lengths of the bases. Trapezoid $A B C D$ with median $\overline{M N}, \overline{A D}\|\overline{M N}\| \overline{B C}$ and $M N=\frac{1}{2}\left(b_{1}+b_{2}\right)$.

If the legs of a trapezoid are congruent, the trapezoid is an isosceles trapezoid. The diagonals of an isosceles trapezoid are congruent. Each pair of base angles of an isosceles trapezoid is congruent. For isosceles trapezoid $A B C D$ at the right,
$A C=B D, m \angle B A D=m \angle C D A$, and $m \angle A B C=m \angle B C D$.

Theorems - Areas of Rectangle, Square, and Trapezoid

The area of a rectangle is the product of its base and height.
The area of a square is the square of the length of a side.
$A=b \cdot h$
$A=s^{2}$
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

Example $1 \quad$ Find the areas of the quadrilaterals shown below.
a.

b.

Solution \quad a. The quadrilateral is a rectangle.

$$
\begin{array}{ll}
h=\frac{1}{2}(16)=8, b=h \cdot \sqrt{3}=8 \sqrt{3} & \text { Use the } 30^{\circ}-60^{\circ}-90^{\circ} \Delta \text { ratio. } \\
A=b \cdot h=8 \sqrt{3} \cdot 8=64 \sqrt{3} & \text { Area formula for rectangle }
\end{array}
$$

b. The quadrilateral is a trapezoid.

$$
\begin{array}{ll}
h \cdot \sqrt{2}=6 \sqrt{2} \Rightarrow h=6 & \text { Use the } 45^{\circ}-45^{\circ}-90^{\circ} \Delta \text { ratio. } \\
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(6)(8+12)=60 & \text { Area formula for trapezoid }
\end{array}
$$

Exercise - Rectangles, Squares, and Trapezoids

1

In square $A B C D$ above, the length of diagonal $A C$ is $5 \sqrt{2}$. What is the area of the square?

Questions 2 and 3 refer to the following information.

In the figure above, $A B C D$ is a rectangle.

2

What is the length of $A E$?

3
What is the area of $\triangle C E D$?

4

What is the area of trapezoid PQRS above?
A) 20
B) 24
C) 26
D) 32

5

What is the area of trapezoid PQRS above?
A) 64
B) 72
C) 76
D) 84

18-3. Regular Polygons

A regular polygon is a convex polygon with all sides congruent and all angles congruent.
A polygon is inscribed in a circle and the circle is circumscribed about the polygon where each vertex of the polygon lies on the circle. The radius of a regular polygon is the distance from the center to a vertex of the polygon. A central angle of a regular polygon is an angle formed by two radii drawn to consecutive vertices. The apothem of a regular polygon is the distance from the center to a side.

Regular Octagon

Center: O
Radius: $O P, O Q, O R, \cdots$
Central Angle: $\angle P O Q, \angle Q O R, \cdots$
Interior Angle: $\angle P Q R, \angle Q R S, \cdots$
Apothem: $O A, O B, \cdots$ (Denoted with letter a.)

Theorems - Angles and Areas of Regular Polygons

The sum of the measures of the interior angles of an n-sided polygon is $(n-2) 180$.
The measure of each interior angle of a regular n-sided polygon is $\frac{(n-2) 180}{n}$.
The sum of the measures of the exterior angles of any polygon is 360 .
The area of a regular polygon is half the product of the apothem a, and the perimeter $p . \quad A=\frac{1}{2} a p$

Regular Polygons Inscribed in Circles

Equilateral Triangle Central angle $=120^{\circ}$ Interior angle $=60^{\circ}$

Square
Central angle $=90^{\circ}$ Interior angle $=90^{\circ}$

Regular Pentagon
Central angle $=72^{\circ}$
Interior angle $=108^{\circ}$

Regular Hexagon
Central angle $=60^{\circ}$
Interior angle $=120^{\circ}$

Regular Octagon Central angle $=45^{\circ}$ Interior angle $=135^{\circ}$

Example $1 \square$ A regular hexagon with the length of side of 4 is shown at the right.
Find the area of the regular hexagon.

Solution

$$
\begin{array}{ll}
& m \angle P Q R=360 \div 6=60 \\
& m \angle P Q S=\frac{1}{2} m \angle P Q R=\frac{1}{2}(60)=30 \\
P S=\frac{1}{2} P R=\frac{1}{2}(4)=2 & \\
a=\sqrt{3} \cdot P S=2 \sqrt{3} & 30^{\circ}-60^{\circ}-90 \\
A=\frac{1}{2} a p=\frac{1}{2}(2 \sqrt{3})(24)=24 \sqrt{3} & A=\frac{1}{2} a p
\end{array}
$$

$$
a=\sqrt{3} \cdot P S=2 \sqrt{3} \quad 30^{\circ}-60^{\circ}-90^{\circ} \text { triangle ratio is used. }
$$

Exercise - Regular Polygons

Questions 1-4 refer to the following information.

The figure above is an equilateral inscribed in a circle with radius 10 .

1

What is the measure of $\angle A O C$?

2

What is the length of $O D$?

3

What is the length of $B D$?

4
What is the area of $\triangle A B C$?
A) $45 \sqrt{3}$
B) $50 \sqrt{3}$
C) $60 \sqrt{3}$
D) $75 \sqrt{3}$
\qquad

Questions 5-7 refer to the following information.

The figure above is a regular pentagon whose radius is 6 .

5

What is the value of x ?

6
What is the measure of $\angle R Q S$?

7

Which of the following equations can be used to find the value of a ?
A) $\sin \angle R Q S=\frac{a}{6}$
B) $\cos \angle R Q S=\frac{a}{6}$
C) $\sin \angle R Q S=\frac{6}{a}$
D) $\cos \angle R Q S=\frac{6}{a}$

Chapter 18 Practice Test

1

What is the area of the isosceles trapezoid above?
A) 238
B) 252
C) 276
D) 308

2

What is the area of rhombus $A B C D$ above?
A) $20 \sqrt{2}$
B) $25 \sqrt{2}$
C) $50 \sqrt{2}$
D) $100 \sqrt{2}$

3

In the figure above, $\overline{E O}$ is the midsegment of trapezoid $T R A P$ and $\overline{R P}$ intersect $\overline{E O}$ at point Z. If $R A=15$ and $E O=18$, what is the length of $\overline{E Z}$?

4

A rectangle has a length that is 6 meters more than twice its width. What is the perimeter of the rectangle if the area of the rectangle is 1,620 square meters?

The figure above shows an equilateral triangle with sides of length a and three squares with sides of length a. If the area of the equilateral triangle is $25 \sqrt{3}$, what is the sum of the areas of the three squares?
A) 210
B) 240
C) 270
D) 300

6

The perimeter of a rectangle is $5 x$ and its length is $\frac{3}{2} x$. If the area of the rectangle is 294 , what is the value of x ?

7

In the figure above, what is the area of the region $A B C D$?
A) $22 \sqrt{3}+30$
B) $22 \sqrt{3}+36$
C) $22 \sqrt{3}+42$
D) $22 \sqrt{3}+48$

8

In the figure above, $A B C D$ is a rectangle and $B C F E$ is a square. If $A B=40, B C=16$, and $m \angle A G D=45$, what is the area of the shaded region?
A) 240
B) 248
C) 256
D) 264

9

The figure above shows parallelogram $A B C D$. Which of the following equations represents the area of parallelogram $A B C D$?
A) $12 \cos x^{\circ} \times 9 \sin x^{\circ}$
B) $12 \times 9 \tan x^{\circ}$
C) $12 \times 9 \cos x^{\circ}$
D) $12 \times 9 \sin x^{\circ}$

10

In the figure above, $A B C D E F$ is a regular hexagon with side lengths of 4. $P Q R S$ is a rectangle. What is the area of the shaded region?
A) $8 \sqrt{3}$
B) $9 \sqrt{3}$
C) $10 \sqrt{3}$
D) $12 \sqrt{3}$

Answer Key

Section 18-1

1. 4
2. 6
3. 112
4.68
4. 70
5. 24
6. 240

Section 18-2

1. 25
2. 7.5
3. 27
4. C
5. D

Section 18-3

1. 120
2. 5
3. 15
4. D
5. 108
6. 36
7. B

Chapter 18 Practice Test

1. C
2. B
3. 10.5
4. 174
5. D
6. 14
7. A
8. C
9. D
10. A

Answers and Explanations

Section 18-1

1. 4

$$
\begin{array}{ll}
P T=\frac{1}{2} P R & \begin{array}{l}
\text { Diagonals of } \square \text { bisect each } \\
\text { other. }
\end{array} \\
x+2 y=\frac{1}{2}(32)=16 & \text { Substitution } \\
S T=T Q & \begin{array}{l}
\text { Diagonals of } \square \text { bisect each } \\
\text { other. }
\end{array} \\
8 x-y=26 & \begin{array}{l}
\text { Substitution } \\
2(8 x-y)=2(26)
\end{array} \\
\begin{array}{l}
\text { Multiply each side by } 2 . \\
16 x-2 y=52
\end{array} & \begin{array}{l}
\text { Simplify. }
\end{array} \\
\text { Add } x+2 y=16 \text { and } 16 x-2 y=52 . \\
16 x-2 y=52 & \\
+\begin{array}{r}
x+2 y=16
\end{array} \\
\begin{array}{l}
17 x=68 \\
x=4
\end{array}
\end{array}
$$

2. 6

Substitute 4 for x into the equation $x+2 y=16$.
$4+2 y=16$
$2 y=12$
$y=6$
3. 112

$$
\begin{array}{ll}
m \angle 3=m \angle 1 & \text { If } \overline{P Q} \| \overline{R S}, \text { Alternate } \\
a^{2}-7=6 a & \text { Interior } \angle s \text { are } \cong . \\
a^{2}-6 a-7=0 & \text { Substitution } \\
(a-7)(a+1)=0 & \text { Make one side } 0 . \\
a=7 \text { or } a=-1 & \text { Factor. } \\
\end{array}
$$

Discard $a=-1$, because the measure of angles in parallelogram are positive.

$$
\begin{aligned}
& m \angle 1=6 a=6(7)=42 \\
& m \angle 2=10 a=10(7)=70 \\
& m \angle P Q R=m \angle 1+m \angle 2 \\
& =42+70 \\
& =112
\end{aligned}
$$

4. 68

Since $\overline{P Q} \| \overline{R S}$, consecutive interior angles are supplementary. Thus, $m \angle P Q R+m \angle Q R S=180$.
$112+m \angle Q R S=180 \quad m \angle P Q R=112$
$m \angle Q R S=68$
5. 70

$$
\begin{array}{rlrl}
m \angle Q T R & =m \angle P R S+m \angle 3 & & \text { Exterior Angle Theorem } \\
m \angle 3=m \angle 1=42 & & \\
m \angle P R S & =4 a & & \text { Given } \\
& =4(7)=28 & & a=7 \\
m \angle Q T R & =28+42 & & \text { Substitution } \\
& =70 & &
\end{array}
$$

6. 24

$C E^{2}+D E^{2}=C D^{2} \quad$ Pythagorean Theorem
$4^{2}+D E^{2}=5^{2}$
$D E^{2}=9$
$D E=3$
Area of $A B C D=\frac{1}{2} A C \cdot B D=\frac{1}{2}(8)(6)=24$
7. 240

$P T^{2}+S T^{2}=P S^{2} \quad$ Pythagorean Theorem
$P T^{2}+9^{2}=15^{2}$
$P T^{2}=15^{2}-9^{2}=144$
$P T=\sqrt{144}=12$
Area of $P Q R S=S R \times P T=20 \times 12=240$.

Section 18-2

1. 25

Let $A D=C D=s$.

$$
\begin{aligned}
& A D^{2}+C D^{2}=(5 \sqrt{2})^{2} \quad \text { Pythagorean Theorem } \\
& s^{2}+s^{2}=50 \\
& 2 s^{2}=50 \\
& s^{2}=25
\end{aligned}
$$

Area of $A B C D=s^{2}=25$.
2. 7.5

$$
\begin{array}{rlrl}
A C^{2} & =A B^{2}+B C^{2} & & \text { Pythagorean Theorem } \\
A C^{2} & =9^{2}+12^{2}=225 & & \text { Substitution } \\
A C & =\sqrt{225}=15 & & \\
A E & =\frac{1}{2} A C & & \text { Diagonals of rectangle } \\
\text { bisect each other. }
\end{array}
$$

3. 27

Area of rectangle $A B C D=12 \times 9=108$.
In a rectangle, diagonals divide the rectangle into four triangles of equal area. Therefore,
Area of $\triangle C E D=\frac{1}{4}$ the area of rectangle $A B C D$ $=\frac{1}{4}(108)=27$.
4. C

Draw $\overline{Q T}$, which is perpendicular to $\overline{P S}$, to make triangle $P Q T$, a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore, $Q T=\frac{1}{2} P Q=\frac{1}{2}(8)=4$.
Area of trapezoid $P Q R S=\frac{1}{2}(P S+Q R) \cdot Q T$
$=\frac{1}{2}(10+3) \cdot 4=26$
5. D

$$
\begin{array}{ll}
P R^{2}+P Q^{2}=Q R^{2} & \text { Pythagorean Theorem } \\
P R^{2}+9^{2}=15^{2} & \text { Substitution } \\
P R^{2}=15^{2}-9^{2}=144 & \\
P R=\sqrt{144}=12 & \\
12^{2}+R S^{2}=13^{2} & \text { Pythagorean Theorem } \\
R S^{2}=13^{2}-12^{2}=25 & \\
R S=\sqrt{25}=5 &
\end{array}
$$

Area of trapezoid PQRS
$=\frac{1}{2}(P Q+R S) \cdot P R=\frac{1}{2}(9+5) \cdot 12$

Section 18-3

1. 120

$m \angle A O B=m \angle B O C=m \angle A O C=\frac{1}{3}(360)=120$
2. 5
$m \angle C O D=\frac{1}{2} m \angle A O C=\frac{1}{2}(120)=60$
Since triangle $C O D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg.
Therefore, $O D=\frac{1}{2} C O=\frac{1}{2}(10)=5$.
3. 15

In a circle all radii are equal in measure.
Therefore, $A O=B O=C O=10$.
$B D=B O+O D=10+5=15$
4. D

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,
$C D=\sqrt{3} O D=5 \sqrt{3}$
$A C=2 C D=10 \sqrt{3}$
Area of $\triangle A B C$
$=\frac{1}{2}(A C)(B D)=\frac{1}{2}(10 \sqrt{3})(15)=75 \sqrt{3}$
5. 108

The measure of each interior angle of a regular n-sided polygon is $\frac{(n-2) 180}{n}$. Therefore,
$x=\frac{(5-2) 180}{5}=108$.
6. 36

$$
\begin{aligned}
& m \angle P Q R=\frac{360}{5}=72 \\
& m \angle R Q S=\frac{1}{2} m \angle P Q R=\frac{1}{2}(72)=36
\end{aligned}
$$

7. B

In triangle $R Q S, Q R$ is the hypotenuse and $Q S$ is adjacent to $\angle R Q S$. Therefore the cosine ratio can be used to find the value of a. $\cos \angle R Q S=\frac{\text { adjacent to } \angle R Q S}{\text { hypotenuse }}=\frac{a}{6}$

Chapter 18 Practice Test

1. C

$$
\begin{aligned}
& A E^{2}+B E^{2}=A B^{2} \quad \text { Pythagorean Theorem } \\
& A E^{2}+12^{2}=13^{2} \\
& A E^{2}=13^{2}-12^{2}=25 \\
& A E=\sqrt{25}=5
\end{aligned}
$$

Also $D F=5$.
$A D=A E+E F+D F=5+18+5=28$
Area of trapezoid $=\frac{1}{2}(A D+B C) \cdot B F$
$=\frac{1}{2}(28+18) \cdot 12=276$
2. B

Draw $\overline{B F}$ perpendicular to $\overline{A D}$ to form a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg. Therefore, $\sqrt{2} B F=A B$.

$$
\sqrt{2} B F=10 \quad \text { Substitution }
$$

$B F=\frac{10}{\sqrt{2}}=\frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{10 \sqrt{2}}{2}=5 \sqrt{2}$
Area of rhombus $A B C D$
$=\frac{1}{2} A D \cdot B F=\frac{1}{2}(10)(5 \sqrt{2})=25 \sqrt{2}$
3. 10.5

The length of the midsegment of a trapezoid is the average of the lengths of the bases. Therefore,
$E O=\frac{1}{2}(T P+R A)$.
$18=\frac{1}{2}(T P+15) \quad$ Substitution
$2 \times 18=2 \times \frac{1}{2}(T P+15)$
$36=T P+15$
$21=T P$
In $\triangle T R P, E Z=\frac{1}{2} T P=\frac{1}{2}(21)=10.5$.
4. 174

Let $w=$ the width of the rectangle in meters, then $2 w+6=$ the length of the rectangle in meters.
Area of rectangle $=$ length \times width
$=(2 w+6) \times w=2 w^{2}+6 w$.
Since the area of the rectangle is 1,620 square meters, you can set up the following equation.
$2 w^{2}+6 w=1620$
$2 w^{2}+6 w-1620=0 \quad$ Make one side 0.
$2\left(w^{2}+3 w-810\right)=0 \quad$ Common factor is 2.
Use the quadratic formula to solve the equation,

$$
\begin{aligned}
w^{2} & +3 w-810=0 . \\
w & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{3^{2}-4(1)(-810)}}{2(1)} \\
& =\frac{-3 \pm \sqrt{3249}}{2}=\frac{-3 \pm 57}{2}
\end{aligned}
$$

Since the width is positive, $w=\frac{-3+57}{2}=27$.
The length is $2 w+6=2(27)+6=60$.

The perimeter of the rectangle is
$2($ length + width $)=2(60+27)=174$
5. D

Area of an equilateral triangle with side length of $a=\frac{\sqrt{3}}{4} a^{2}$. Since the area of the equilateral triangle is given as $25 \sqrt{3}$, you can set up the following equation.
$\frac{\sqrt{3}}{4} a^{2}=25 \sqrt{3}$
$a^{2}=25 \sqrt{3} \cdot \frac{4}{\sqrt{3}}=100$
The area of each square is a^{2}, or 100 , so the sum of the areas of the three squares is 3×100, or 300 .
6. 14

Let $w=$ the width of the rectangle.
The perimeter of the rectangle is given as $5 x$.
Perimeter of rectangle $=2$ (length + width $)$
$5 x=2\left(\frac{3}{2} x+w\right)$
$5 x=3 x+2 w$
$2 x=2 w$
$x=w$
Area of rectangle $=$ length \times width $=294$
$\frac{3}{2} x \cdot x=294$
$x^{2}=294 \cdot \frac{2}{3}=196$
$x=\sqrt{196}=14$
7. A

$A C^{2}=A B^{2}+B C^{2} \quad$ Pythagorean Theorem
$A C^{2}=11^{2}+(4 \sqrt{3})^{2} \quad$ Substitution
$A C^{2}=121+48=169$
$A C=\sqrt{169}=13$
$A C^{2}=A D^{2}+C D^{2} \quad$ Pythagorean Theorem
$169=12^{2}+C D$
Substitution
$25=C D^{2}$
$5=C D$
The area of region $A B C D$ is the sum of the area of $\triangle A B C$ and the area of $\triangle A D C$.
Area of the region $A B C D$
$=\frac{1}{2}(11)(4 \sqrt{3})+\frac{1}{2}(12)(5)$
$=22 \sqrt{3}+30$
8. C

Since $B C F E$ is a square,

$$
\begin{aligned}
B C & =B E=C F=E F=16 . \\
A E & =A B-B E \\
& =40-16=24
\end{aligned}
$$

Triangle $A G D$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the two legs are equal in measure. Therefore,

$$
\begin{aligned}
A D & =D G=16 . \\
F G & =D C-D G-C F \\
& =40-16-16=8
\end{aligned}
$$

Area of the shaded region
$=\frac{1}{2}(A E+F G) \cdot E F$
$=\frac{1}{2}(24+8) \cdot 16=256$
9. D

Draw $\overline{B E}$ perpendicular to $\overline{A D}$.
In $\triangle A B E, \sin x^{\circ}=\frac{B E}{9}$.
Therefore, $B E=9 \sin x^{\circ}$.
Area of parallelogram $A B C D$
$=A D \times B E=12 \times 9 \sin x^{\circ}$
10. A

Draw the diagonals of a regular hexagon, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$.
$B E=B O+O E=8$ and $Q R=B E=8$
Since $A B C D E F$ is a regular hexagon, the diagonals intersect at the center of the hexagon. Let the point of intersection be O. The diagonals divide the hexagon into 6 equilateral triangles with side lengths of 4 . Area of each equilateral triangle with side lengths of 4 is $\frac{\sqrt{3}}{4}(4)^{2}=4 \sqrt{3}$.
Draw $\overline{O T}$ perpendicular to $\overline{P S}$.
Triangle $A O T$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
Therefore, $A T=\frac{1}{2} A O=\frac{1}{2}(4)=2$ and
$O T=\sqrt{3} A T=2 \sqrt{3}$.
In rectangle $P Q R S, R S=2 O T=2(2 \sqrt{3})=4 \sqrt{3}$.
Area of rectangle $P Q R S=Q R \times R S$
$=8 \times 4 \sqrt{3}=32 \sqrt{3}$.
Area of regular hexagon $A B C D E F$
$=6 \times$ area of the equilateral triangle
$=6 \times 4 \sqrt{3}=24 \sqrt{3}$
Area of shaded region
$=$ area of rectangle - area of hexagon
$=32 \sqrt{3}-24 \sqrt{3}=8 \sqrt{3}$.

