Answer Key

Section 18-1

1. 4
2. 6
3. 112
4.68
4. 70
5. 24
6. 240

Section 18-2

1. 25
2. 7.5
3. 27
4. C
5. D

Section 18-3

1. 120
2. 5
3. 15
4. D
5. 108
6. 36
7. B

Chapter 18 Practice Test

1. C
2. B
3. 10.5
4. 174
5. D
6. 14
7. A
8. C
9. D
10. A

Answers and Explanations

Section 18-1

1. 4

$$
\begin{array}{ll}
P T=\frac{1}{2} P R & \begin{array}{l}
\text { Diagonals of } \square \text { bisect each } \\
\text { other. }
\end{array} \\
x+2 y=\frac{1}{2}(32)=16 & \text { Substitution } \\
S T=T Q & \begin{array}{l}
\text { Diagonals of } \square \text { bisect each } \\
\text { other. }
\end{array} \\
8 x-y=26 & \begin{array}{l}
\text { Substitution } \\
2(8 x-y)=2(26)
\end{array} \\
\begin{array}{l}
\text { Multiply each side by } 2 . \\
16 x-2 y=52
\end{array} & \begin{array}{l}
\text { Simplify. }
\end{array} \\
\text { Add } x+2 y=16 \text { and } 16 x-2 y=52 . \\
16 x-2 y=52 & \\
+\begin{array}{r}
x+2 y=16
\end{array} \\
\begin{array}{l}
17 x=68 \\
x=4
\end{array}
\end{array}
$$

2. 6

Substitute 4 for x into the equation $x+2 y=16$.
$4+2 y=16$
$2 y=12$
$y=6$
3. 112

$$
\begin{array}{ll}
m \angle 3=m \angle 1 & \text { If } \overline{P Q} \| \overline{R S}, \text { Alternate } \\
a^{2}-7=6 a & \text { Interior } \angle s \text { are } \cong . \\
a^{2}-6 a-7=0 & \text { Substitution } \\
(a-7)(a+1)=0 & \text { Make one side } 0 . \\
a=7 \text { or } a=-1 & \text { Factor. } \\
\end{array}
$$

Discard $a=-1$, because the measure of angles in parallelogram are positive.

$$
\begin{aligned}
& m \angle 1=6 a=6(7)=42 \\
& m \angle 2=10 a=10(7)=70 \\
& m \angle P Q R=m \angle 1+m \angle 2 \\
& =42+70 \\
& =112
\end{aligned}
$$

4. 68

Since $\overline{P Q} \| \overline{R S}$, consecutive interior angles are supplementary. Thus, $m \angle P Q R+m \angle Q R S=180$.

$$
\begin{aligned}
& 112+m \angle Q R S=180 \quad m \angle P Q R=112 \\
& m \angle Q R S=68
\end{aligned}
$$

5. 70

$$
\begin{array}{rlrl}
m \angle Q T R & =m \angle P R S+m \angle 3 & & \text { Exterior Angle Theorem } \\
m \angle 3=m \angle 1=42 & & \\
m \angle P R S & =4 a & & \text { Given } \\
& =4(7)=28 & & a=7 \\
m \angle Q T R & =28+42 & & \text { Substitution } \\
& =70 & &
\end{array}
$$

6. 24

$C E^{2}+D E^{2}=C D^{2} \quad$ Pythagorean Theorem
$4^{2}+D E^{2}=5^{2}$
$D E^{2}=9$
$D E=3$
Area of $A B C D=\frac{1}{2} A C \cdot B D=\frac{1}{2}(8)(6)=24$
7. 240

$P T^{2}+S T^{2}=P S^{2} \quad$ Pythagorean Theorem
$P T^{2}+9^{2}=15^{2}$
$P T^{2}=15^{2}-9^{2}=144$
$P T=\sqrt{144}=12$
Area of $P Q R S=S R \times P T=20 \times 12=240$.

Section 18-2

1. 25

Let $A D=C D=s$.

$$
\begin{aligned}
& A D^{2}+C D^{2}=(5 \sqrt{2})^{2} \quad \text { Pythagorean Theorem } \\
& s^{2}+s^{2}=50 \\
& 2 s^{2}=50 \\
& s^{2}=25
\end{aligned}
$$

Area of $A B C D=s^{2}=25$.
2. 7.5

$$
\left.\begin{array}{rlrl}
A C^{2} & =A B^{2}+B C^{2} & & \text { Pythagorean Theorem } \\
A C^{2} & =9^{2}+12^{2}=225 & & \text { Substitution } \\
A C & =\sqrt{225}=15 & & \\
A E & =\frac{1}{2} A C & & \text { Diagonals of rectangle } \\
\text { bisect each other. }
\end{array}\right]
$$

3. 27

Area of rectangle $A B C D=12 \times 9=108$.
In a rectangle, diagonals divide the rectangle into four triangles of equal area. Therefore,
Area of $\triangle C E D=\frac{1}{4}$ the area of rectangle $A B C D$ $=\frac{1}{4}(108)=27$.
4. C

Draw $\overline{Q T}$, which is perpendicular to $\overline{P S}$, to make triangle $P Q T$, a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore, $Q T=\frac{1}{2} P Q=\frac{1}{2}(8)=4$.
Area of trapezoid $P Q R S=\frac{1}{2}(P S+Q R) \cdot Q T$
$=\frac{1}{2}(10+3) \cdot 4=26$
5. D

$$
\begin{array}{ll}
P R^{2}+P Q^{2}=Q R^{2} & \text { Pythagorean Theorem } \\
P R^{2}+9^{2}=15^{2} & \text { Substitution } \\
P R^{2}=15^{2}-9^{2}=144 & \\
P R=\sqrt{144}=12 & \\
12^{2}+R S^{2}=13^{2} & \text { Pythagorean Theorem } \\
R S^{2}=13^{2}-12^{2}=25 & \\
R S=\sqrt{25}=5 &
\end{array}
$$

Area of trapezoid PQRS
$=\frac{1}{2}(P Q+R S) \cdot P R=\frac{1}{2}(9+5) \cdot 12$

Section 18-3

1. 120

$m \angle A O B=m \angle B O C=m \angle A O C=\frac{1}{3}(360)=120$
2. 5
$m \angle C O D=\frac{1}{2} m \angle A O C=\frac{1}{2}(120)=60$
Since triangle $C O D$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg.
Therefore, $O D=\frac{1}{2} C O=\frac{1}{2}(10)=5$.
3. 15

In a circle all radii are equal in measure.
Therefore, $A O=B O=C O=10$.
$B D=B O+O D=10+5=15$
4. D

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,
$C D=\sqrt{3} O D=5 \sqrt{3}$
$A C=2 C D=10 \sqrt{3}$
Area of $\triangle A B C$
$=\frac{1}{2}(A C)(B D)=\frac{1}{2}(10 \sqrt{3})(15)=75 \sqrt{3}$
5. 108

The measure of each interior angle of a regular n-sided polygon is $\frac{(n-2) 180}{n}$. Therefore,
$x=\frac{(5-2) 180}{5}=108$.
6. 36

$$
\begin{aligned}
& m \angle P Q R=\frac{360}{5}=72 \\
& m \angle R Q S=\frac{1}{2} m \angle P Q R=\frac{1}{2}(72)=36
\end{aligned}
$$

7. B

In triangle $R Q S, Q R$ is the hypotenuse and $Q S$ is adjacent to $\angle R Q S$. Therefore the cosine ratio can be used to find the value of a. $\cos \angle R Q S=\frac{\text { adjacent to } \angle R Q S}{\text { hypotenuse }}=\frac{a}{6}$

Chapter 18 Practice Test

1. C

$$
\begin{aligned}
& A E^{2}+B E^{2}=A B^{2} \quad \text { Pythagorean Theorem } \\
& A E^{2}+12^{2}=13^{2} \\
& A E^{2}=13^{2}-12^{2}=25 \\
& A E=\sqrt{25}=5
\end{aligned}
$$

Also $D F=5$.
$A D=A E+E F+D F=5+18+5=28$
Area of trapezoid $=\frac{1}{2}(A D+B C) \cdot B F$
$=\frac{1}{2}(28+18) \cdot 12=276$
2. B

Draw $\overline{B F}$ perpendicular to $\overline{A D}$ to form a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg. Therefore, $\sqrt{2} B F=A B$.

$$
\sqrt{2} B F=10 \quad \text { Substitution }
$$

$B F=\frac{10}{\sqrt{2}}=\frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{10 \sqrt{2}}{2}=5 \sqrt{2}$
Area of rhombus $A B C D$
$=\frac{1}{2} A D \cdot B F=\frac{1}{2}(10)(5 \sqrt{2})=25 \sqrt{2}$
3. 10.5

The length of the midsegment of a trapezoid is the average of the lengths of the bases. Therefore,
$E O=\frac{1}{2}(T P+R A)$.
$18=\frac{1}{2}(T P+15) \quad$ Substitution
$2 \times 18=2 \times \frac{1}{2}(T P+15)$
$36=T P+15$
$21=T P$
In $\triangle T R P, E Z=\frac{1}{2} T P=\frac{1}{2}(21)=10.5$.
4. 174

Let $w=$ the width of the rectangle in meters, then $2 w+6=$ the length of the rectangle in meters.
Area of rectangle $=$ length \times width
$=(2 w+6) \times w=2 w^{2}+6 w$.
Since the area of the rectangle is 1,620 square meters, you can set up the following equation.
$2 w^{2}+6 w=1620$
$2 w^{2}+6 w-1620=0 \quad$ Make one side 0.
$2\left(w^{2}+3 w-810\right)=0 \quad$ Common factor is 2.
Use the quadratic formula to solve the equation,

$$
\begin{aligned}
w^{2} & +3 w-810=0 . \\
w & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{3^{2}-4(1)(-810)}}{2(1)} \\
& =\frac{-3 \pm \sqrt{3249}}{2}=\frac{-3 \pm 57}{2}
\end{aligned}
$$

Since the width is positive, $w=\frac{-3+57}{2}=27$.
The length is $2 w+6=2(27)+6=60$.

The perimeter of the rectangle is
$2($ length + width $)=2(60+27)=174$
5. D

Area of an equilateral triangle with side length of $a=\frac{\sqrt{3}}{4} a^{2}$. Since the area of the equilateral triangle is given as $25 \sqrt{3}$, you can set up the following equation.
$\frac{\sqrt{3}}{4} a^{2}=25 \sqrt{3}$
$a^{2}=25 \sqrt{3} \cdot \frac{4}{\sqrt{3}}=100$
The area of each square is a^{2}, or 100 , so the sum of the areas of the three squares is 3×100, or 300 .
6. 14

Let $w=$ the width of the rectangle.
The perimeter of the rectangle is given as $5 x$.
Perimeter of rectangle $=2$ (length + width $)$
$5 x=2\left(\frac{3}{2} x+w\right)$
$5 x=3 x+2 w$
$2 x=2 w$
$x=w$
Area of rectangle $=$ length \times width $=294$
$\frac{3}{2} x \cdot x=294$
$x^{2}=294 \cdot \frac{2}{3}=196$
$x=\sqrt{196}=14$
7. A

$A C^{2}=A B^{2}+B C^{2} \quad$ Pythagorean Theorem
$A C^{2}=11^{2}+(4 \sqrt{3})^{2} \quad$ Substitution
$A C^{2}=121+48=169$
$A C=\sqrt{169}=13$
$A C^{2}=A D^{2}+C D^{2} \quad$ Pythagorean Theorem
$169=12^{2}+C D$
Substitution
$25=C D^{2}$
$5=C D$
The area of region $A B C D$ is the sum of the area of $\triangle A B C$ and the area of $\triangle A D C$.
Area of the region $A B C D$
$=\frac{1}{2}(11)(4 \sqrt{3})+\frac{1}{2}(12)(5)$
$=22 \sqrt{3}+30$
8. C

Since $B C F E$ is a square,

$$
\begin{aligned}
B C & =B E=C F=E F=16 . \\
A E & =A B-B E \\
& =40-16=24
\end{aligned}
$$

Triangle $A G D$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the two legs are equal in measure. Therefore,

$$
\begin{aligned}
A D & =D G=16 . \\
F G & =D C-D G-C F \\
& =40-16-16=8
\end{aligned}
$$

Area of the shaded region
$=\frac{1}{2}(A E+F G) \cdot E F$
$=\frac{1}{2}(24+8) \cdot 16=256$
9. D

Draw $\overline{B E}$ perpendicular to $\overline{A D}$.
In $\triangle A B E, \sin x^{\circ}=\frac{B E}{9}$.
Therefore, $B E=9 \sin x^{\circ}$.
Area of parallelogram $A B C D$
$=A D \times B E=12 \times 9 \sin x^{\circ}$
10. A

Draw the diagonals of a regular hexagon, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$.
$B E=B O+O E=8$ and $Q R=B E=8$
Since $A B C D E F$ is a regular hexagon, the diagonals intersect at the center of the hexagon. Let the point of intersection be O. The diagonals divide the hexagon into 6 equilateral triangles with side lengths of 4 . Area of each equilateral triangle with side lengths of 4 is $\frac{\sqrt{3}}{4}(4)^{2}=4 \sqrt{3}$.
Draw $\overline{O T}$ perpendicular to $\overline{P S}$.
Triangle $A O T$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
Therefore, $A T=\frac{1}{2} A O=\frac{1}{2}(4)=2$ and
$O T=\sqrt{3} A T=2 \sqrt{3}$.
In rectangle $P Q R S, R S=2 O T=2(2 \sqrt{3})=4 \sqrt{3}$.
Area of rectangle $P Q R S=Q R \times R S$
$=8 \times 4 \sqrt{3}=32 \sqrt{3}$.
Area of regular hexagon $A B C D E F$
$=6 \times$ area of the equilateral triangle
$=6 \times 4 \sqrt{3}=24 \sqrt{3}$
Area of shaded region
$=$ area of rectangle - area of hexagon
$=32 \sqrt{3}-24 \sqrt{3}=8 \sqrt{3}$.

