CHAPTER 17
 Triangles

17-1. Angles of a Triangle

Angle Sum Theorem

The angle sum of a triangle is 180°.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.
$m \angle B C D=m \angle A+m \angle B$

Isosceles Triangle Theorem

If two sides of a triangle are congruent, the angles opposite of those sides are congruent.
If $A B=B C$, then $m \angle C=m \angle A$.
The converse is also true.

Isosceles Triangle Theorem - Corollary

If a line bisects the vertex angle of an isosceles triangle, the line is the perpendicular bisector of the base.
If $A B=B C$ and $m \angle A B D=m \angle C B D$, then $\overline{B D} \perp \overline{A C}$ and $A D=C D$.

Example $1 \square$ a. In $\triangle A B C$ shown below, $A B=B C, m \angle B C D=110$ and $m \angle B D E=140$. Find $m \angle 1, m \angle 2, m \angle 3$, and $m \angle 4$.

Solution

$$
\begin{array}{ll}
& m \angle 1+m \angle B C D=180 \\
m \angle 1+110=180 \\
m \angle 1=180-110=70 \\
m \angle 2=m \angle 1=70 \\
m \angle 3+m \angle 2=110 \\
m \angle 3+70=110 \\
m \angle 3=40 \\
m \angle 4+110=140 \\
m \angle 4=30
\end{array}
$$

Straight angle equals 180°.
Substitution
Subtraction
Isosceles Triangle Theorem
Exterior Angle Theorem
Substitution
Subtraction
Exterior Angle Theorem
Subtraction

Exercises - Angles of a Triangle

1

In the triangle above, what is the value of x ?
A) 44
B) 48
C) 52
D) 56

2

In $\triangle A B C$ above, if $A B=A D=D C$, what is the value of x ?
A) 92
B) 96
C) 102
D) 108

3

In $\triangle A B C$ above, $m \angle A=m \angle C$. If $x>0$, what is the value of x ?

4

Note: Figure not drawn to scale.

In the figure above, $A C \perp B C$. What is the measure of $\angle A B C$?
A) 50
B) 55
C) 60
D) 65

5

In the figure above, $A D=B D=B C$. If $m \angle A=26$, what is the measure of $m \angle D B C$?
A) 68
B) 72
C) 76
D) 82

17-2. Pythagorean Theorem and Special Right Triangles

A triangle with a right angle is called a right triangle. The side opposite to the right angle is called the hypotenuse and the other two sides are called legs.
In a right triangle the acute angles are complementary.
In triangle shown at right, $m \angle A+m \angle B=90$.
The Pythagorean theorem states that in a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.
In right triangle $A B C$ at the right, $a^{2}+b^{2}=c^{2}$.
The converse is also true.
The Pythagorean theorem can be used to determine the ratios of the lengths of the sides of two special right triangles.

In a $\mathbf{4 5}^{\circ} \mathbf{- 4 5} \mathbf{- 9 0}^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times
 as long as a leg. An isosceles right triangle is also called a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
In a $\mathbf{3 0}{ }^{\circ} \mathbf{- 6 0}{ }^{\circ}-\mathbf{9 0}{ }^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

Example $1 \quad$ In the figure below, find the value of x.

Solution

$$
\begin{aligned}
& \square D^{2}=(\sqrt{7})^{2}+3^{3}=16 \\
& \\
& x^{2}=B D^{2}+3^{2} \\
& x^{2}=16+9=25 \\
& x=\sqrt{25}=5
\end{aligned}
$$

Pythagorean Theorem
Pythagorean Theorem
Substitution

Example $2 \square$ In the figures below, find the values of x and y.
a.

b.

Solution \quad a. Since a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is an isosceles right triangle, $x=2$.
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, hypotenuse $=\sqrt{2} \cdot \operatorname{leg} \Rightarrow y=2 \sqrt{2}$
b. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, longer leg $=\sqrt{3} \cdot$ shorter leg $\Rightarrow 3=\sqrt{3} x \Rightarrow x=\frac{3}{\sqrt{3}}=\sqrt{3}$

$$
\text { hypotenuse }=2 \cdot \text { shorter leg } \Rightarrow y=2 \sqrt{3}
$$

Exercises - Pythagorean Theorem and Special Right Triangles

1

In the figure above, if $A D=B D=2 \sqrt{3}$, what is the length of $A B$?
A) $4 \sqrt{3}$
B) $3 \sqrt{6}$
C) 6
D) $6 \sqrt{2}$

2

In $\triangle A B C$ above, $B D=\sqrt{3}$. What is the perimeter of $\triangle A B C$?
A) $2 \sqrt{2}+6$
B) $2 \sqrt{3}+6$
C) $2 \sqrt{6}+6$
D) $3 \sqrt{2}+6$

3

Note: Figure not drawn to scale.

In the figure above, $A B=6, B C=8$, and $C D=5$. What is the length of $A D$?
A) $4 \sqrt{3}$
B) $5 \sqrt{2}$
C) $5 \sqrt{3}$
D) $6 \sqrt{2}$

4

Note: Figure not drawn to scale.

In the figure above, $\angle A \cong \angle C$ and $\overline{B D}$ bisects $\overline{A C}$. What is the perimeter of $\triangle A B C$?
A) 32
B) 36
C) $14+10 \sqrt{2}$
D) $14+12 \sqrt{2}$

17-3. Similar Triangles and Proportional Parts

AA Similarity Postulate

If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.
If two triangles are similar, their corresponding angles are congruent and their corresponding sides are proportional.
If two triangles are similar, their perimeters are proportional to the measures of the corresponding sides.

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\angle C \cong \angle F$. Therefore $\triangle A B C \sim \triangle D E F$, and $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$.

Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, it divides those sides proportionally.
In $\triangle A B C$, if $\overline{A C} \| \overline{D E}$ then $\triangle A B C \sim \triangle D B E$ by AA Similarity.
It follows that $\frac{A B}{D B}=\frac{C B}{E B}=\frac{A C}{D E}$. Also $\frac{B D}{D A}=\frac{B E}{E C}, \frac{B A}{D A}=\frac{B C}{E C}$,
 $\frac{B D}{D E}=\frac{B A}{A C}$, and $\frac{B E}{D E}=\frac{B C}{A C}$.
If D and E are the midpoints of $\overline{A B}$ and $\overline{B C}, \overline{A C} \| \overline{D E}$ and $D E=\frac{1}{2} A C$.

Example $1 \square$ In the figure below, $\overline{A B} \| \overline{D E}$. Find $C D$ and $C E$.

Solution $\square m \angle A=m \angle E \quad$ Alternate Interior $\angle s$ are \cong
$m \angle B C A=m \angle D C E \quad$ Vertical $\angle s$ are \cong.
$\triangle A B C \sim \triangle E D C$
AA Similarity
Therefore $\frac{A B}{E D}=\frac{B C}{D C} \Rightarrow \frac{9}{6.75}=\frac{6}{D C} \Rightarrow D C=4.5$

$$
\frac{A B}{E D}=\frac{A C}{E C} \Rightarrow \frac{9}{6.75}=\frac{13}{E C} \Rightarrow E C=9.75
$$

Example $2 \square$ In the figure at right, $\overline{A C} \| \overline{D E}$.
Find the length of $\overline{D A}$ and $\overline{A C}$.
Solution $\square \frac{B D}{D A}=\frac{B E}{E C} \Rightarrow \frac{6}{D A}=\frac{8}{12} \Rightarrow D A=9$

$$
\frac{B D}{D E}=\frac{B A}{A C} \Rightarrow \frac{6}{10}=\frac{6+9}{A C} \Rightarrow A C=25
$$

Exercises - Similar Triangles and Proportional Parts

1

In the figure above, if $A B=6, D E=3$, and $B D=12$, what is the length of $A E$?
A) 12
B) $9 \sqrt{2}$
C) $8 \sqrt{3}$
D) 15

2

Note: Figure not drawn to scale.

In the figure above, $\angle B \cong \angle D$. If $B C=16$, $C D=10$, and $C E=11$, what is the length of $A E$?
A) 16.8
B) 17.2
C) 17.6
D) 18.4

Questions 3 and 4 refer to the following information.

In the figure above, $\overline{D E} \| \overline{A C}$.

3

What is the value of x ?
A) 12.5
B) 15
C) 16.5
D) 18

4
What is the value of y ?
A) 5.2
B) 5.6
C) 6.0
D) 6.4

17-4. Area of a Triangle

The area A of a triangle equals half the product of a base and the height to that base.

$$
A=\frac{1}{2} b \cdot h
$$

Area of equilateral triangle with side length of a.
$A=\frac{1}{2}(a)\left(\frac{\sqrt{3}}{2} a\right)=\frac{\sqrt{3}}{4} a^{2}$

Any side of a triangle can be used as a base. The height that corresponds to the base is the perpendicular line segment from the opposite vertex to the base. The area of $\triangle A B C$ at the right
can be written in 3 different ways: area of $\triangle A B C=\frac{1}{2} B C \cdot A D=\frac{1}{2} A C \cdot B E=\frac{1}{2} A B \cdot C F$.
The perimeter P of a triangle is the sum of the lengths of all three sides.
$P=A B+B C+C A$

Ratios of Areas of Two Triangles

1. If two triangles are similar with corresponding sides in a ratio of $a: b$, then the ratio of their areas equals $a^{2}: b^{2}$.
2. If two triangles have equal heights, then the ratio of their areas equals the ratio of their bases.
3. If two triangles have equal bases, then the ratio of their areas equals the ratio of their heights.

Example $1 \square$ In the figure below, if $A C=6, B D=4$, and $A B=8$, what is the length of $C E$?

Solution $\quad \square$ Area of $\triangle A B C=\frac{1}{2} A C \cdot B D=\frac{1}{2} A B \cdot C E$. $\Rightarrow \frac{1}{2}(6)(4)=\frac{1}{2}(8)(C E) \Rightarrow C E=3$

Example $2 \square$ In the figure below, $A D=5$ and $D C=3$. Find the ratio of the area of $\triangle A B D$ to the area of $\triangle C B D$.

Solution \quad The two triangles have the same height, so the ratio of the areas of the two triangles is equal to the ratio of their bases.

$$
\frac{\text { area of } \triangle A B D}{\text { area of } \triangle C B D}=\frac{A D}{C D}=\frac{5}{3}
$$

Exercises - Area of a Triangle

1

In the figure above, the area of right triangle $A B C$ is 60 . What is the perimeter of $\triangle A B C$?
A) 34
B) 36
C) 38
D) 40

2

In triangle $A B C$ above, if $B D$ was increased by 50 percent and $A C$ was reduced by 50 percent, how would the area of $\triangle A B C$ change?
A) The area of $\triangle A B C$ would be decreased by 25 percent.
B) The area of $\triangle A B C$ would be increased by 25 percent.
C) The area of $\triangle A B C$ would not change.
D) The area of $\triangle A B C$ would be decreased by 50 percent.

3

In the figure above, what is the area of $\triangle A B C$?
A) $24 \sqrt{3}$
B) $30 \sqrt{3}$
C) $36 \sqrt{3}$
D) $48 \sqrt{3}$

4

The figure above shows right triangle $\triangle A B C$ and three squares. If the area of square region I is 80 square inches and the area of square region II is 150 square inches, which of the following is true about the area of square region III?
A) Less than 230 square inches.
B) More than 230 square inches.
C) Equal to 230 square inches.
D) It cannot be determined from the information given.

Chapter 17 Practice Test

In the figure above, $C D E$ is an equilateral triangle and $A B C D$ is a square with an area of $4 x^{2}$. What is the area of triangle $C D E$ in terms of x ?
A) $\frac{\sqrt{3}}{2} x^{2}$
B) $\sqrt{3} x^{2}$
C) $\frac{3 \sqrt{3}}{2} x^{2}$
D) $2 \sqrt{3} x^{2}$

2

In the figure above, $\overline{P Q} \perp \overline{Q R}$ and $\overline{P Q} \cong \overline{P T}$. What is the measure of $\angle R$?
A) 30
B) 35
C) 40
D) 45

3

Note: Figure not drawn to scale.

In the figure above, $\overline{V Q}\|\overline{W R}\| \overline{T S}$.
If $P S=15$, what is the length of $\overline{R S}$?
A) 4.5
B) 5
C) 6
D) 6.5

4

Note: Figure not drawn to scale.

A person 6 feet tall stands so that the ends of his shadow and the shadow of the pole coincide. The length of the person's shadow was measured 7.5 feet and the length of the pole's shadow, $S D$, was measured 18 feet. How tall is the pole?
A) 12.8
B) 13.6
C) 14.4
D) 15.2

5

In the figure above, $\triangle A B C$ and $\triangle D B E$ are right triangles. If $A C=12, B C=15$, and $D E=8$, what is the length of $B E$?
A) 8.5
B) 9
C) 9.5
D) 10

6

In the figure above, what is the value of $a-b$?
A) 50
B) 55
C) 60
D) 65

In the figure above, $\overline{P Q} \| \overline{S T}$ and segment $P T$ intersects segment $Q S$ at R. What is the length of segment $Q S$?

In the figure above, if $P S=162$, what is the length of segment $Q R$?

9

In the figure above, what is the area of the isosceles triangle $A B C$?

Answer Key

Section 17-1

1. A
2. D
3. 5
4. D
5. C

Section 17-2

1. C
2. B
3. C
4. A

Section 17-3

1. D
2. C
3. B
4. A

Section 17-4

1. D
2. A
3. C
4. C

Chapter 17 Practice Test

1. B
2. A
3. B
4. C
5. D
6. A
7. 10.4
8. 45
9. 240

Answers and Explanations

Section 17-1

1. A

$$
\begin{aligned}
& 3 x-40=x+48 \\
& 3 x-40-x=x+48-x \\
& 2 x-40=48
\end{aligned}
$$

$$
\text { Subtract } x \text { from each side }
$$

Simplify.

$$
\text { Add } 40 \text { to each side. }
$$

2. D

$A D=D C$
$m \angle D A C=m \angle D C A=18$
$m \angle B D A$
$=m \angle D C A+m \angle D A C$
$m \angle B D A=18+18$
$m \angle B D A=36$
$A B=A D$
$m \angle D B A=m \angle B D A=36$

Given
Isosceles Δ Theorem Exterior \angle Theorem
$m \angle D A C=m \angle D C A=18$
Simplify.
Given
Isosceles Δ Theorem

In triangle $A B D$, the angle sum is 180 .
Thus, $x+36+36=180$.
Solving the equation for x gives $x=108$.
3. 5

$$
\begin{array}{ll}
m \angle A=m \angle C & \text { Given } \\
A B=B C & \text { Isosceles } \Delta \text { Theorem } \\
x^{2}=2 x+15 & \text { Substitution } \\
x^{2}-2 x-15=0 & \text { Make one side } 0 . \\
(x+3)(x-5)=0 & \text { Factor. } \\
x+3=0 \text { or } x-5=0 & \text { Zero Product Property } \\
x=-3 \text { or } x=5 &
\end{array}
$$

Since $x>0$, the value of x is 5 .
4. D

$$
\begin{array}{ll}
m \angle A+30=55 & \text { Exterior Angle Theorem } \\
m \angle A=25 & \\
m \angle A+m \angle B=90 & \text { The acute } \angle s \text { of a right } \\
& \Delta \text { are complementary. } \\
25+m \angle B=90 & m \angle A=25 . \\
m \angle B=65 &
\end{array}
$$

5. C

$$
\begin{array}{ll}
A D=B D & \text { Given } \\
m \angle A B D=m \angle A & \text { Isosceles } \triangle \text { Theorem } \\
m \angle A=26 & \text { Given } \\
m \angle A B D=26 & m \angle A=26 \\
m \angle B D C & \text { Exterior } \angle \text { Theorem } \\
=m \angle A+m \angle A B D & \\
m \angle B D C=26+26=52 & m \angle A=m \angle A B D=26 \\
B D=B C & \text { Given } \\
m \angle C=m \angle B D C & \text { Isosceles } \Delta \text { Theorem } \\
m \angle C=52 & m \angle B D C=52 \\
m \angle C+m \angle B D C+m \angle D B C=180 \quad \text { Angle Sum } \\
& \quad \text { Theorem } \\
52+52+m \angle D B C=180 & m \angle C=m \angle B D C=52 \\
m \angle D B C=76 &
\end{array}
$$

Section 17-2

1. C

$$
A D=B D
$$

Given
$m \angle B A D=m \angle B=30 \quad$ Isosceles \triangle Theorem $m \angle A D C=m \angle B A D+m \angle B$ Exterior \angle Theorem $m \angle A D C=30+30=60 \quad m \angle B A D=m \angle B=30$ $\triangle A D C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore,
$A D=2 C D$
$2 \sqrt{3}=2 C D$
$\sqrt{3}=C D$.
$B C=B D+C D=2 \sqrt{3}+\sqrt{3}=3 \sqrt{3}$
Triangle $A B C$ is also a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,
$B C=\sqrt{3} A C$
$3 \sqrt{3}=\sqrt{3} A C$
$3=A C$.
$A B=2 A C=2 \times 3=6$
2. B

In the figure above, $\triangle A B D$ and $\triangle B C D$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg. In $\triangle A B D$,
$A B=2 B D=2 \sqrt{3}$
$A D=\sqrt{3} B D=\sqrt{3} \cdot \sqrt{3}=3$.
In $\triangle B C D$,
$B D=\sqrt{3} C D$
$\sqrt{3}=\sqrt{3} C D$

$$
\begin{aligned}
& 1=C D \\
& B C=2 C D=2 \cdot 1=2
\end{aligned}
$$

perimeter of $\triangle A B C$
$=A B+B C+A C$
$=2 \sqrt{3}+2+(3+1)$
$=2 \sqrt{3}+6$
3. C

Note: Figure not drawn to scale.

$$
\begin{array}{lc}
A C^{2}=A B^{2}+B C^{2} & \text { Pythagorean Theorem } \\
A C^{2}=6^{2}+8^{2}=100 & \\
A C^{2}=A D^{2}+C D^{2} & \text { Pythagorean Theorem } \\
100=A D^{2}+5^{2} & A C^{2}=100, C D=5 \\
100-25=A D^{2} & \\
75=A D^{2} & \\
\sqrt{75}=A D & \\
5 \sqrt{3}=A D &
\end{array}
$$

4. A

Note: Figure not drawn to scale.
$A D=C D=7 \quad$ Definition of segment bisector
$A B^{2}=B D^{2}+A D^{2} \quad$ Pythagorean Theorem
$A B^{2}=(4 \sqrt{2})^{2}+7^{2} \quad$ Substitution
$=32+49=81$
$A B=\sqrt{81}=9 \quad$ Square root both sides.
$A B=B C$
Isosceles Triangle Theorem

Perimeter of $\triangle A B C$
$=A B+B C+A C$
$=9+9+14=32$

Section 17-3

1. D

Draw $\overline{E F}$, which is parallel and congruent to $\overline{B D}$. Extend $\overline{A B}$ to point F. Since $\overline{E F} \| \overline{B D}, \angle F$ is a right angle.

$$
\begin{aligned}
& B D=E F=12 \text { and } D E=B F=3 \\
& \begin{aligned}
A F & =A B+B F=6+3=9 \\
A E^{2} & =A F^{2}+E F^{2} \quad \text { Pythagorean Theorem } \\
& =9^{2}+12^{2} \\
& =225 \\
A E & =\sqrt{225}=15
\end{aligned}
\end{aligned}
$$

2. C

Note: Figure not drawn to scale.

$$
\begin{aligned}
& \angle B \cong \angle D \\
& \angle A C B \cong \angle E C D \\
& \triangle A C B \sim \triangle E C D
\end{aligned}
$$

Given
Vertical $\angle s$ are \cong.
AA similarity
If two triangles are similar, their corresponding sides are proportional.

$$
\begin{aligned}
& \frac{B C}{D C}=\frac{A C}{E C} \\
& \frac{16}{10}=\frac{A C}{11} \\
& 10 A C=16 \times 11 \\
& A C=17.6
\end{aligned}
$$

3. B

$$
\begin{aligned}
& \frac{B D}{D E}=\frac{B A}{A C} \Rightarrow \frac{12}{9}=\frac{20}{x} \Rightarrow 12 x=9 \cdot 20 \\
& \Rightarrow x=15
\end{aligned}
$$

4. A

$$
\begin{aligned}
& \frac{B D}{D A}=\frac{B E}{E C} \Rightarrow \frac{12}{8}=\frac{7.8}{y} \Rightarrow 12 y=8 \times 7.8 \\
& \Rightarrow y=5.2
\end{aligned}
$$

Section 17-4

1. D

$$
\begin{aligned}
& \text { Area of triangle } A B C=\frac{1}{2} B C \cdot A C \\
& \begin{array}{l}
=\frac{1}{2}(15) A C=60 \\
\Rightarrow 7.5 A C=60 \Rightarrow A C=8
\end{array} \\
& \begin{array}{l}
A B^{2}=A C^{2}+B C^{2} \\
A B^{2}=8^{2}+15^{2} \\
\quad=289
\end{array} \\
& A B=\sqrt{289}=17
\end{aligned}
$$

$$
\text { Perimeter of } \triangle A B C=A B+B C+A C
$$

$$
=17+15+8=40
$$

2. A

Let $B D=h$ and let $A C=b$.
If $B D$ was increased by 50 percent, the new $B D$ will be $h+0.5 h$, or $1.5 h$.
If $A C$ was reduced by 50 percent, the new $A C$ will be $b-0.5 b$, or $0.5 b$.

The new area of $\triangle A B C=\frac{1}{2}($ new $A C) \times($ new $B D)$
$=\frac{1}{2}(0.5 b)(1.5 h)=\frac{1}{2}(0.75 b h)$
Because the area of the triangle before change was $\frac{1}{2}(b h)$, the area has decreased by 25 percent.
3. C

$\triangle A B D$ and $\triangle C B D$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{aligned}
& A B=2 B D \\
& 12=2 B D \\
& 6=B D \\
& A D=\sqrt{3} B D \\
& A D=\sqrt{3}(6)=6 \sqrt{3} \\
& A C=2 A D=12 \sqrt{3} \\
& \text { Area of } \triangle A B C=\frac{1}{2} A C \cdot B D=\frac{1}{2}(12 \sqrt{3})(6) \\
& =36 \sqrt{3}
\end{aligned}
$$

4. C

The area of a square is the square of the length of any side.
The area of square region $\mathrm{I}=B C^{2}=80$.
The area of square region $\mathrm{II}=A C^{2}=150$.
The area of square region $\mathrm{III}=A B^{2}$

$$
\begin{aligned}
A B^{2} & =B C^{2}+A C^{2} \quad \text { Pythagorean Theorem } \\
& =80+150=230
\end{aligned}
$$

Therefore, the area of square region III is 230 .

Chapter 17 Practice Test

1. B

If the area of square $A B C D$ is $4 x^{2}$, the length of the side of square $A B C D$ is $2 x$.
Drawing $\overline{D F}$, a perpendicular bisector of $\overline{C E}$, makes two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $\triangle C D F$ and $\triangle E D F$.
$C E=2 x$
$C F=\frac{1}{2} C E=\frac{1}{2}(2 x)=x$
$D F=\sqrt{3} C F=\sqrt{3} x$
Area of $\triangle C D E=\frac{1}{2} C E \cdot D F=\frac{1}{2}(2 x)(\sqrt{3} x)$
$=\sqrt{3} x^{2}$
2. A

$\overline{P Q} \cong \overline{P T}$
Given
$m \angle P Q T=m \angle T=35 \quad$ Isosceles \triangle Theorem
$m \angle P Q T+m \angle T+m \angle Q P T$ Angle Sum Theorem
$=180$
$35+35+m \angle Q P T=180 \quad$ Substitution
$m \angle Q P T=110$
$m \angle Q P T \quad$ Angle Addition Postulate
$=m \angle Q P R+m \angle R P T$
$110=m \angle Q P R+50 \quad$ Substitution
$60=m \angle Q P R$
$\overline{P Q} \perp \overline{Q R} \quad$ Given
$m \angle P Q R=90 \quad$ Definition of Right \angle
$m \angle P Q R+m \angle Q P R+m \angle R$ Angle Sum Theorem $=180$
$90+60+m \angle R=180 \quad$ Substitution
$m \angle R=30$
3. B

Note: Figure not drawn to scale.
Since $\overline{V Q}\|\overline{W R}\| \overline{T S}, \frac{P T}{P S}=\frac{x}{R S}$.

$$
\begin{array}{ll}
\frac{(x-1)+(x+1)+x}{15}=\frac{x}{R S} & \text { Substitution } \\
\frac{3 x}{15}=\frac{x}{R S} & \text { Simplify. } \\
3 x(R S)=15 x & \text { Cross Products } \\
R S=5 &
\end{array}
$$

4. C

Note: Figure not drawn to scale.
Let $h=$ the length of the pole.
$\frac{6}{7.5}=\frac{h}{18}$
$7.5 h=6 \times 18$
Cross Products
$h=14.4$
5. D

$m \angle C=m \angle B E D$
$m \angle B=m \angle B$
$\triangle A B C \sim \triangle D B E$

All right $\angle s$ are equal.
Reflexive Property
AA Similarity Postulate

$$
\begin{array}{ll}
\frac{A C}{B C}=\frac{D E}{B E} & \text { AA Similarity I } \\
\frac{12}{15}=\frac{8}{B E} & \text { Substitution } \\
12 B E=15 \times 8 & \text { Cross Products } \\
B E=10 &
\end{array}
$$

6. A

$$
\begin{array}{ll}
m \angle 1+m \angle 2+m \angle 3=180 & \text { Angle Sum Theorem } \\
a+m \angle 1=180 & \text { Straight } \angle \text { measures } 180 . \\
m \angle 1=180-a & \\
m \angle 2=b & \text { Vertical } \angle s \text { are } \cong . \\
130+m \angle 3=180 & \text { Straight } \angle \text { measures } 180 . \\
m \angle 3=50 &
\end{array}
$$

$$
180-a+b+50=180 \quad \text { Substitution }
$$

$$
230-a+b=180
$$

$$
-a+b=-50
$$

$$
a-b=50
$$

7. 10.4

$\overline{P Q} \| \overline{S T}$
$m \angle P=m \angle T$
$m \angle P R Q=m \angle T R S$
$\triangle P R Q \sim \Delta T R S$
$\frac{P R}{T R}=\frac{R Q}{R S}$
$\frac{5}{8}=\frac{R Q}{6.4}$
$8 R Q=5 \times 6.4$
$R Q=4$
$Q S=S R+R Q=6.4+4=10.4$

Given
If $\overline{P Q} \| \overline{S T}$, alternate interior $\angle s$ are \cong. Vertical $\angle s$ are \cong.

AA Similarity Postulate
AA Similarity Postulate

Substitution

Cross Products
8. 45

In the figure above, $\overline{P W}\|\overline{Q V}\| \overline{R U} \| \overline{S T}$, because they are all perpendicular to $\overline{T W}$.
Therefore, $\frac{P S}{W T}=\frac{Q R}{V U}$.
$\frac{162}{3 x+2.5 x+3.5 x}=\frac{Q R}{2.5 x} \quad$ Substitution
$\frac{162}{9 x}=\frac{Q R}{2.5 x}$
Simplify.
$9 x(Q R)=162(2.5 x)$
Cross Products
$9 x(Q R)=405 x$
Simplify.
$Q R=45$
9. 240

Draw $\overline{B D}$ perpendicular to $\overline{A C}$. Since $\triangle A B C$ is an isosceles triangle, $\overline{B D}$ bisects $\overline{A C}$.
Therefore, $A D=C D=\frac{1}{2} A C=\frac{1}{2}(48)=24$.

$$
\begin{aligned}
& C D^{2}+B D^{2}=B C^{2} \quad \text { Pythagorean Theorem } \\
& 24^{2}+B D^{2}=26^{2} \\
& 576+B D^{2}=676 \\
& B D^{2}=100 \\
& B D=10 \\
& \begin{aligned}
\text { Area of } \triangle A B C & =\frac{1}{2}(A C)(B D) \\
& =\frac{1}{2}(48)(10) \\
& =240
\end{aligned}
\end{aligned}
$$

