Answer Key

Section 17-1

1. A
2. D
3. 5
4. D
5. C

Section 17-2

1. C
2. B
3. C
4. A

Section 17-3

1. D
2. C
3. B
4. A

Section 17-4

1. D
2. A
3. C
4. C

Chapter 17 Practice Test

1. B
2. A
3. B
4. C
5. D
6. A
7. 10.4
8. 45
9. 240

Answers and Explanations

Section 17-1

1. A

$$
\begin{aligned}
& 3 x-40=x+48 \\
& 3 x-40-x=x+48-x \\
& 2 x-40=48
\end{aligned}
$$

$$
\text { Subtract } x \text { from each side }
$$

Simplify.

$$
\text { Add } 40 \text { to each side. }
$$

2. D

$A D=D C$
$m \angle D A C=m \angle D C A=18$
$m \angle B D A$
$=m \angle D C A+m \angle D A C$
$m \angle B D A=18+18$
$m \angle B D A=36$
$A B=A D$
$m \angle D B A=m \angle B D A=36$

Given
Isosceles Δ Theorem Exterior \angle Theorem
$m \angle D A C=m \angle D C A=18$
Simplify.
Given
Isosceles Δ Theorem

In triangle $A B D$, the angle sum is 180 .
Thus, $x+36+36=180$.
Solving the equation for x gives $x=108$.
3. 5

$$
\begin{array}{ll}
m \angle A=m \angle C & \text { Given } \\
A B=B C & \text { Isosceles } \Delta \text { Theorem } \\
x^{2}=2 x+15 & \text { Substitution } \\
x^{2}-2 x-15=0 & \text { Make one side } 0 . \\
(x+3)(x-5)=0 & \text { Factor. } \\
x+3=0 \text { or } x-5=0 & \text { Zero Product Property } \\
x=-3 \text { or } x=5 &
\end{array}
$$

Since $x>0$, the value of x is 5 .
4. D

$$
\begin{array}{ll}
m \angle A+30=55 & \text { Exterior Angle Theorem } \\
m \angle A=25 & \\
m \angle A+m \angle B=90 & \text { The acute } \angle s \text { of a right } \\
& \Delta \text { are complementary. } \\
25+m \angle B=90 & m \angle A=25 . \\
m \angle B=65 &
\end{array}
$$

5. C

$$
\begin{array}{ll}
A D=B D & \text { Given } \\
m \angle A B D=m \angle A & \text { Isosceles } \triangle \text { Theorem } \\
m \angle A=26 & \text { Given } \\
m \angle A B D=26 & m \angle A=26 \\
m \angle B D C & \text { Exterior } \angle \text { Theorem } \\
=m \angle A+m \angle A B D & \\
m \angle B D C=26+26=52 & m \angle A=m \angle A B D=26 \\
B D=B C & \text { Given } \\
m \angle C=m \angle B D C & \text { Isosceles } \Delta \text { Theorem } \\
m \angle C=52 & m \angle B D C=52 \\
m \angle C+m \angle B D C+m \angle D B C=180 \quad \text { Angle Sum } \\
& \quad \text { Theorem } \\
52+52+m \angle D B C=180 & m \angle C=m \angle B D C=52 \\
m \angle D B C=76 &
\end{array}
$$

Section 17-2

1. C

$$
A D=B D
$$

Given
$m \angle B A D=m \angle B=30 \quad$ Isosceles \triangle Theorem $m \angle A D C=m \angle B A D+m \angle B$ Exterior \angle Theorem $m \angle A D C=30+30=60 \quad m \angle B A D=m \angle B=30$ $\triangle A D C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg. Therefore,
$A D=2 C D$
$2 \sqrt{3}=2 C D$
$\sqrt{3}=C D$.
$B C=B D+C D=2 \sqrt{3}+\sqrt{3}=3 \sqrt{3}$
Triangle $A B C$ is also a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,
$B C=\sqrt{3} A C$
$3 \sqrt{3}=\sqrt{3} A C$
$3=A C$.
$A B=2 A C=2 \times 3=6$
2. B

In the figure above, $\triangle A B D$ and $\triangle B C D$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg. In $\triangle A B D$,
$A B=2 B D=2 \sqrt{3}$
$A D=\sqrt{3} B D=\sqrt{3} \cdot \sqrt{3}=3$.
In $\triangle B C D$,
$B D=\sqrt{3} C D$
$\sqrt{3}=\sqrt{3} C D$

$$
\begin{aligned}
& 1=C D \\
& B C=2 C D=2 \cdot 1=2
\end{aligned}
$$

perimeter of $\triangle A B C$
$=A B+B C+A C$
$=2 \sqrt{3}+2+(3+1)$
$=2 \sqrt{3}+6$
3. C

Note: Figure not drawn to scale.

$$
\begin{array}{lc}
A C^{2}=A B^{2}+B C^{2} & \text { Pythagorean Theorem } \\
A C^{2}=6^{2}+8^{2}=100 & \\
A C^{2}=A D^{2}+C D^{2} & \text { Pythagorean Theorem } \\
100=A D^{2}+5^{2} & A C^{2}=100, C D=5 \\
100-25=A D^{2} & \\
75=A D^{2} & \\
\sqrt{75}=A D & \\
5 \sqrt{3}=A D &
\end{array}
$$

4. A

Note: Figure not drawn to scale.
$A D=C D=7 \quad$ Definition of segment bisector
$A B^{2}=B D^{2}+A D^{2} \quad$ Pythagorean Theorem
$A B^{2}=(4 \sqrt{2})^{2}+7^{2} \quad$ Substitution
$=32+49=81$
$A B=\sqrt{81}=9 \quad$ Square root both sides.
$A B=B C$
Isosceles Triangle Theorem

Perimeter of $\triangle A B C$
$=A B+B C+A C$
$=9+9+14=32$

Section 17-3

1. D

Draw $\overline{E F}$, which is parallel and congruent to $\overline{B D}$. Extend $\overline{A B}$ to point F. Since $\overline{E F} \| \overline{B D}, \angle F$ is a right angle.

$$
\begin{aligned}
& B D=E F=12 \text { and } D E=B F=3 \\
& \begin{aligned}
A F & =A B+B F=6+3=9 \\
A E^{2} & =A F^{2}+E F^{2} \quad \text { Pythagorean Theorem } \\
& =9^{2}+12^{2} \\
& =225 \\
A E & =\sqrt{225}=15
\end{aligned}
\end{aligned}
$$

2. C

Note: Figure not drawn to scale.

$$
\begin{aligned}
& \angle B \cong \angle D \\
& \angle A C B \cong \angle E C D \\
& \triangle A C B \sim \triangle E C D
\end{aligned}
$$

Given
Vertical $\angle s$ are \cong.
AA similarity
If two triangles are similar, their corresponding sides are proportional.

$$
\begin{aligned}
& \frac{B C}{D C}=\frac{A C}{E C} \\
& \frac{16}{10}=\frac{A C}{11} \\
& 10 A C=16 \times 11 \\
& A C=17.6
\end{aligned}
$$

3. B

$$
\begin{aligned}
& \frac{B D}{D E}=\frac{B A}{A C} \Rightarrow \frac{12}{9}=\frac{20}{x} \Rightarrow 12 x=9 \cdot 20 \\
& \Rightarrow x=15
\end{aligned}
$$

4. A

$$
\begin{aligned}
& \frac{B D}{D A}=\frac{B E}{E C} \Rightarrow \frac{12}{8}=\frac{7.8}{y} \Rightarrow 12 y=8 \times 7.8 \\
& \Rightarrow y=5.2
\end{aligned}
$$

Section 17-4

1. D

$$
\begin{aligned}
& \text { Area of triangle } A B C=\frac{1}{2} B C \cdot A C \\
& \begin{array}{l}
=\frac{1}{2}(15) A C=60 \\
\Rightarrow 7.5 A C=60 \Rightarrow A C=8
\end{array} \\
& \begin{array}{l}
A B^{2}=A C^{2}+B C^{2} \\
A B^{2}=8^{2}+15^{2} \\
\quad=289
\end{array} \\
& A B=\sqrt{289}=17
\end{aligned}
$$

$$
\text { Perimeter of } \triangle A B C=A B+B C+A C
$$

$$
=17+15+8=40
$$

2. A

Let $B D=h$ and let $A C=b$.
If $B D$ was increased by 50 percent, the new $B D$ will be $h+0.5 h$, or $1.5 h$.
If $A C$ was reduced by 50 percent, the new $A C$ will be $b-0.5 b$, or $0.5 b$.

The new area of $\triangle A B C=\frac{1}{2}($ new $A C) \times($ new $B D)$
$=\frac{1}{2}(0.5 b)(1.5 h)=\frac{1}{2}(0.75 b h)$
Because the area of the triangle before change was $\frac{1}{2}(b h)$, the area has decreased by 25 percent.
3. C

$\triangle A B D$ and $\triangle C B D$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{aligned}
& A B=2 B D \\
& 12=2 B D \\
& 6=B D \\
& A D=\sqrt{3} B D \\
& A D=\sqrt{3}(6)=6 \sqrt{3} \\
& A C=2 A D=12 \sqrt{3} \\
& \text { Area of } \triangle A B C=\frac{1}{2} A C \cdot B D=\frac{1}{2}(12 \sqrt{3})(6) \\
& =36 \sqrt{3}
\end{aligned}
$$

4. C

The area of a square is the square of the length of any side.
The area of square region $\mathrm{I}=B C^{2}=80$.
The area of square region $\mathrm{II}=A C^{2}=150$.
The area of square region $\mathrm{III}=A B^{2}$

$$
\begin{aligned}
A B^{2} & =B C^{2}+A C^{2} \quad \text { Pythagorean Theorem } \\
& =80+150=230
\end{aligned}
$$

Therefore, the area of square region III is 230 .

Chapter 17 Practice Test

1. B

If the area of square $A B C D$ is $4 x^{2}$, the length of the side of square $A B C D$ is $2 x$.
Drawing $\overline{D F}$, a perpendicular bisector of $\overline{C E}$, makes two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $\triangle C D F$ and $\triangle E D F$.
$C E=2 x$
$C F=\frac{1}{2} C E=\frac{1}{2}(2 x)=x$
$D F=\sqrt{3} C F=\sqrt{3} x$
Area of $\triangle C D E=\frac{1}{2} C E \cdot D F=\frac{1}{2}(2 x)(\sqrt{3} x)$
$=\sqrt{3} x^{2}$
2. A

$\overline{P Q} \cong \overline{P T}$
Given
$m \angle P Q T=m \angle T=35 \quad$ Isosceles \triangle Theorem
$m \angle P Q T+m \angle T+m \angle Q P T$ Angle Sum Theorem
$=180$
$35+35+m \angle Q P T=180 \quad$ Substitution
$m \angle Q P T=110$
$m \angle Q P T \quad$ Angle Addition Postulate
$=m \angle Q P R+m \angle R P T$
$110=m \angle Q P R+50 \quad$ Substitution
$60=m \angle Q P R$
$\overline{P Q} \perp \overline{Q R} \quad$ Given
$m \angle P Q R=90 \quad$ Definition of Right \angle
$m \angle P Q R+m \angle Q P R+m \angle R$ Angle Sum Theorem $=180$
$90+60+m \angle R=180 \quad$ Substitution
$m \angle R=30$
3. B

Note: Figure not drawn to scale.
Since $\overline{V Q}\|\overline{W R}\| \overline{T S}, \frac{P T}{P S}=\frac{x}{R S}$.

$$
\begin{array}{ll}
\frac{(x-1)+(x+1)+x}{15}=\frac{x}{R S} & \text { Substitution } \\
\frac{3 x}{15}=\frac{x}{R S} & \text { Simplify. } \\
3 x(R S)=15 x & \text { Cross Products } \\
R S=5 &
\end{array}
$$

4. C

Note: Figure not drawn to scale.
Let $h=$ the length of the pole.
$\frac{6}{7.5}=\frac{h}{18}$
$7.5 h=6 \times 18$
Cross Products
$h=14.4$
5. D

$m \angle C=m \angle B E D$
$m \angle B=m \angle B$
$\triangle A B C \sim \triangle D B E$

All right $\angle s$ are equal.
Reflexive Property
AA Similarity Postulate

$$
\begin{array}{ll}
\frac{A C}{B C}=\frac{D E}{B E} & \text { AA Similarity I } \\
\frac{12}{15}=\frac{8}{B E} & \text { Substitution } \\
12 B E=15 \times 8 & \text { Cross Products } \\
B E=10 &
\end{array}
$$

6. A

$$
\begin{array}{ll}
m \angle 1+m \angle 2+m \angle 3=180 & \text { Angle Sum Theorem } \\
a+m \angle 1=180 & \text { Straight } \angle \text { measures } 180 . \\
m \angle 1=180-a & \\
m \angle 2=b & \text { Vertical } \angle s \text { are } \cong . \\
130+m \angle 3=180 & \text { Straight } \angle \text { measures } 180 . \\
m \angle 3=50 &
\end{array}
$$

$$
180-a+b+50=180 \quad \text { Substitution }
$$

$$
230-a+b=180
$$

$$
-a+b=-50
$$

$$
a-b=50
$$

7. 10.4

$\overline{P Q} \| \overline{S T}$
$m \angle P=m \angle T$
$m \angle P R Q=m \angle T R S$
$\triangle P R Q \sim \Delta T R S$
$\frac{P R}{T R}=\frac{R Q}{R S}$
$\frac{5}{8}=\frac{R Q}{6.4}$
$8 R Q=5 \times 6.4$
$R Q=4$
$Q S=S R+R Q=6.4+4=10.4$

Given
If $\overline{P Q} \| \overline{S T}$, alternate interior $\angle s$ are \cong. Vertical $\angle s$ are \cong.

AA Similarity Postulate
AA Similarity Postulate

Substitution

Cross Products
8. 45

In the figure above, $\overline{P W}\|\overline{Q V}\| \overline{R U} \| \overline{S T}$, because they are all perpendicular to $\overline{T W}$.
Therefore, $\frac{P S}{W T}=\frac{Q R}{V U}$.
$\frac{162}{3 x+2.5 x+3.5 x}=\frac{Q R}{2.5 x} \quad$ Substitution
$\frac{162}{9 x}=\frac{Q R}{2.5 x}$
Simplify.
$9 x(Q R)=162(2.5 x)$
Cross Products
$9 x(Q R)=405 x$
Simplify.
$Q R=45$
9. 240

Draw $\overline{B D}$ perpendicular to $\overline{A C}$. Since $\triangle A B C$ is an isosceles triangle, $\overline{B D}$ bisects $\overline{A C}$.
Therefore, $A D=C D=\frac{1}{2} A C=\frac{1}{2}(48)=24$.

$$
\begin{aligned}
& C D^{2}+B D^{2}=B C^{2} \quad \text { Pythagorean Theorem } \\
& 24^{2}+B D^{2}=26^{2} \\
& 576+B D^{2}=676 \\
& B D^{2}=100 \\
& B D=10 \\
& \begin{aligned}
\text { Area of } \triangle A B C & =\frac{1}{2}(A C)(B D) \\
& =\frac{1}{2}(48)(10) \\
& =240
\end{aligned}
\end{aligned}
$$

