Answer Key

Section 17-1

1. A 2. D 3. 5 4. D 5. C

Section 17-2

1. C 2. B 3. C 4. A

Section 17-3

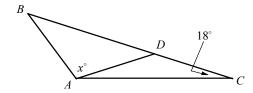
1. D 2. C 3. B 4. A

Section 17-4

1. D 2. A 3. C 4. C

Chapter 17 Practice Test

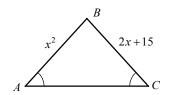
1. B 2. A 3. B 4. C 5. D 6. A 7. 10.4 8. 45 9. 240


Answers and Explanations

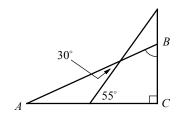
Section 17-1

1. A

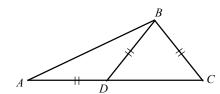
3x-40=x+48 Exterior Angle Theorem 3x-40-x=x+48-x Subtract x from each side. 2x-40=48 Simplify. Add 40 to each side. x=44


2. D

AD = DCGiven $m \angle DAC = m \angle DCA = 18$ Isosceles Δ Theorem $m \angle BDA$ Exterior \angle Theorem $= m \angle DCA + m \angle DAC$ $m \angle BDA = 18 + 18$ $m \angle DAC = m \angle DCA = 18$ $m \angle BDA = 36$ Simplify.AB = ADGiven $m \angle DBA = m \angle BDA = 36$ Isosceles Δ Theorem


In triangle ABD, the angle sum is 180.

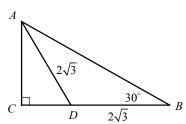
Thus, x+36+36=180. Solving the equation for x gives x=108. 3. 5


 $m \angle A = m \angle C$ Given AB = BC Isosceles \triangle Theorem $x^2 = 2x + 15$ Substitution $x^2 - 2x - 15 = 0$ Make one side 0. (x+3)(x-5) = 0 Factor. x+3 = 0 or x-5 = 0 Zero Product Property x = -3 or x = 5Since x > 0, the value of x is 5.

4. D

 $m \angle A + 30 = 55$ Exterior Angle Theorem $m \angle A = 25$ The acute $\angle s$ of a right $\triangle A$ are complementary. $25 + m \angle B = 90$ $m \angle A = 25$. $m \angle A = 25$.

5. C



AD = BDGiven $m \angle ABD = m \angle A$ Isosceles Δ Theorem $m\angle A = 26$ Given $m\angle ABD = 26$ $m\angle A = 26$ $m \angle BDC$ Exterior ∠ Theorem $= m\angle A + m\angle ABD$ $m \angle BDC = 26 + 26 = 52$ $m\angle A = m\angle ABD = 26$ BD = BCGiven $m \angle C = m \angle BDC$ Isosceles Δ Theorem $m \angle C = 52$ $m \angle BDC = 52$ $m\angle C + m\angle BDC + m\angle DBC = 180$ Angle Sum Theorem $52 + 52 + m \angle DBC = 180$ $m \angle C = m \angle BDC = 52$ $m\angle DBC = 76$

290 Chapter 17

Section 17-2

1. C

AD = BD Given $m \angle BAD = m \angle B = 30$ Isosceles \triangle Theorem $m \angle ADC = m \angle BAD + m \angle B$ Exterior \angle Theorem $m \angle ADC = 30 + 30 = 60$ $m \angle BAD = m \angle B = 30$ $\triangle ADC$ is a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle.

In a 30° - 60° - 90° triangle, the hypotenuse is twice as long as the shorter leg. Therefore,

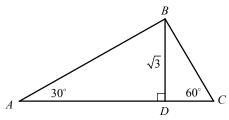
$$AD = 2CD$$

$$2\sqrt{3} = 2CD$$

$$\sqrt{3} = CD$$
.

$$BC = BD + CD = 2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$$

Triangle *ABC* is also a 30° - 60° - 90° triangle. In a 30° - 60° - 90° triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,


$$BC = \sqrt{3}AC$$

$$3\sqrt{3} = \sqrt{3}AC$$

$$3 = AC$$
.

$$AB = 2AC = 2 \times 3 = 6$$

2. B

In the figure above, $\triangle ABD$ and $\triangle BCD$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg. In $\triangle ABD$,

$$AB = 2BD = 2\sqrt{3}$$

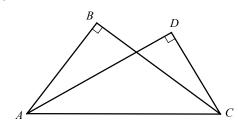
$$AD = \sqrt{3}BD = \sqrt{3} \cdot \sqrt{3} = 3$$
.

In $\triangle BCD$,

$$BD = \sqrt{3}CD$$

$$\sqrt{3} = \sqrt{3}CD$$

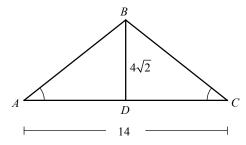
$$1 = CD$$


$$BC = 2CD = 2 \cdot 1 = 2$$
perimeter of $\triangle ABC$

$$= AB + BC + AC$$

$$= 2\sqrt{3} + 2 + (3 + 1)$$

 $=2\sqrt{3}+6$


3. C

Note: Figure not drawn to scale.

$$AC^2 = AB^2 + BC^2$$
 Pythagorean Theorem $AC^2 = 6^2 + 8^2 = 100$ $AC^2 = AD^2 + CD^2$ Pythagorean Theorem $100 = AD^2 + 5^2$ $AC^2 = 100$, $CD = 5$ $100 - 25 = AD^2$ $\sqrt{75} = AD$ $5\sqrt{3} = AD$

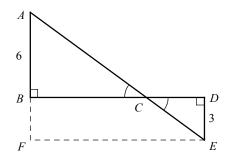
4. A

Note: Figure not drawn to scale.

$$AD = CD = 7$$
 Definition of segment bisector

 $AB^2 = BD^2 + AD^2$ Pythagorean Theorem

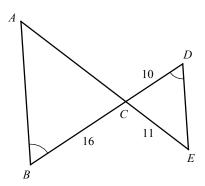
 $AB^2 = (4\sqrt{2})^2 + 7^2$ Substitution


 $= 32 + 49 = 81$
 $AB = \sqrt{81} = 9$ Square root both sides.

 $AB = BC$ Isosceles Triangle Theorem

Perimeter of $\triangle ABC$
 $= AB + BC + AC$
 $= 9 + 9 + 14 = 32$

Section 17-3


1. D

Draw \overline{EF} , which is parallel and congruent to \overline{BD} . Extend \overline{AB} to point F. Since $\overline{EF} \parallel \overline{BD}$, $\angle F$ is a right angle.

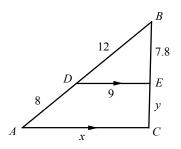
$$BD = EF = 12$$
 and $DE = BF = 3$
 $AF = AB + BF = 6 + 3 = 9$
 $AE^2 = AF^2 + EF^2$ Pythagorean Theorem
 $= 9^2 + 12^2$
 $= 225$
 $AE = \sqrt{225} = 15$

2. C

Note: Figure not drawn to scale.

$$\angle B \cong \angle D$$
 Given $\angle ACB \cong \angle ECD$ Vertical $\angle s$ are \cong . $\triangle ACB \sim \triangle ECD$ AA similarity

If two triangles are similar, their corresponding sides are proportional.


$$\frac{BC}{DC} = \frac{AC}{EC}$$

$$\frac{16}{10} = \frac{AC}{11}$$

$$10AC = 16 \times 11$$

$$AC = 17.6$$

3. B

$$\frac{BD}{DE} = \frac{BA}{AC} \implies \frac{12}{9} = \frac{20}{x} \implies 12x = 9 \cdot 20$$

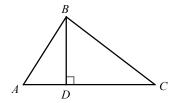
$$\implies x = 15$$

4. A

$$\frac{BD}{DA} = \frac{BE}{EC} \implies \frac{12}{8} = \frac{7.8}{y} \implies 12y = 8 \times 7.8$$

$$\implies y = 5.2$$

Section 17-4


1. D

Area of triangle $ABC = \frac{1}{2}BC \cdot AC$ $= \frac{1}{2}(15)AC = 60$ $\Rightarrow 7.5AC = 60 \Rightarrow AC = 8$ $AB^2 = AC^2 + BC^2$ Pythagorean Theorem $AB^2 = 8^2 + 15^2$ = 289

Perimeter of
$$\triangle ABC = AB + BC + AC$$

= 17+15+8=40

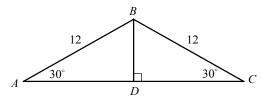
 $AB = \sqrt{289} = 17$

2. A

Let BD = h and let AC = b.

If BD was increased by 50 percent, the new BD will be h + 0.5h, or 1.5h.

If AC was reduced by 50 percent, the new AC will be b-0.5b, or 0.5b.


The new area of $\triangle ABC = \frac{1}{2} (\text{new } AC) \times (\text{new } BD)$

292 Chapter 17

$$= \frac{1}{2}(0.5b)(1.5h) = \frac{1}{2}(0.75bh)$$

Because the area of the triangle before change was $\frac{1}{2}(bh)$, the area has decreased by 25 percent.

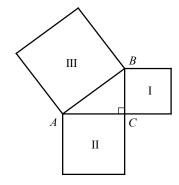
3. C

 $\triangle ABD$ and $\triangle CBD$ are 30°-60°-90° triangles. In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$AB = 2BD$$

$$12 = 2BD$$

$$6 = BD$$


$$AD = \sqrt{3}BD$$

$$AD = \sqrt{3}(6) = 6\sqrt{3}$$

$$AC = 2AD = 12\sqrt{3}$$
Area of $\triangle ABC = \frac{1}{2}AC \cdot BD = \frac{1}{2}(12\sqrt{3})(6)$

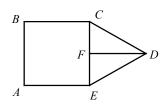
$$= 36\sqrt{3}$$

4. C

The area of a square is the square of the length of any side.

The area of square region $I = BC^2 = 80$.

The area of square region $II = AC^2 = 150$.


The area of square region III = AB^2

$$AB^{2} = BC^{2} + AC^{2}$$
 Pythagorean Theorem
= $80 + 150 = 230$

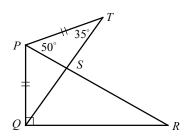
Therefore, the area of square region III is 230.

Chapter 17 Practice Test

1. B

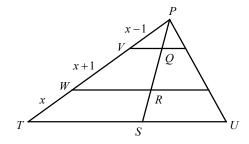
If the area of square ABCD is $4x^2$, the length of the side of square ABCD is 2x.

Drawing \overline{DF} , a perpendicular bisector of \overline{CE} , makes two 30°-60°-90° triangles, ΔCDF and ΔEDF .


$$CE = 2x$$

$$CF = \frac{1}{2}CE = \frac{1}{2}(2x) = x$$

$$DF = \sqrt{3}CF = \sqrt{3}x$$
Area of $\triangle CDE = \frac{1}{2}CE \cdot DF = \frac{1}{2}(2x)(\sqrt{3}x)$


$$= \sqrt{3}x^2$$

2. A

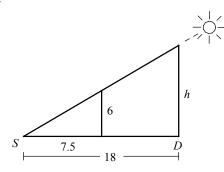
$\overline{PQ} \cong \overline{PT}$	Given
$m\angle PQT = m\angle T = 35$	Isosceles Δ Theorem
$m\angle PQT + m\angle T + m\angle QPT$	Angle Sum Theorem
= 180	
$35 + 35 + m \angle QPT = 180$	Substitution
$m \angle QPT = 110$	
$m \angle QPT$	Angle Addition Postulate
$= m \angle QPR + m \angle RPT$	
$110 = m \angle QPR + 50$	Substitution
$60 = m \angle QPR$	
$\overline{PQ} \perp \overline{QR}$	Given
$m\angle PQR = 90$	Definition of Right \angle
$m\angle PQR + m\angle QPR + m\angle R$	Angle Sum Theorem
= 180	
$90 + 60 + m\angle R = 180$	Substitution
$m\angle R = 30$	

3. B

Note: Figure not drawn to scale.

Since
$$\overline{VQ} \parallel \overline{WR} \parallel \overline{TS}$$
, $\frac{PT}{PS} = \frac{x}{RS}$.

$$\frac{(x-1)+(x+1)+x}{15} = \frac{x}{RS}$$
 Substitution


$$\frac{3x}{15} = \frac{x}{RS}$$

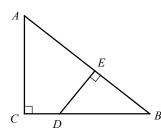
Simplify.

$$3x(RS) = 15x$$
$$RS = 5$$

Cross Products

4. C

Note: Figure not drawn to scale.

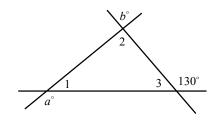

Let h = the length of the pole.

$$\frac{6}{7.5} = \frac{h}{18}$$
$$7.5h = 6 \times 1$$

 $7.5h = 6 \times 18$ h = 14.4

Cross Products

5. D


$$m \angle C = m \angle BED$$

 $m \angle B = m \angle B$
 $\Delta ABC \sim \Delta DBE$

All right $\angle s$ are equal. Reflexive Property AA Similarity Postulate

$$\frac{AC}{BC} = \frac{DE}{BE}$$
AA Similarity Postulate
$$\frac{12}{15} = \frac{8}{BE}$$
Substitution
$$12BE = 15 \times 8$$
Cross Products

6. A

BE = 10

$$m\angle 1 + m\angle 2 + m\angle 3 = 180$$
 Angle Sum Theorem

$$a + m \angle 1 = 180$$

Straight ∠ measures 180.

$$m \angle 1 = 180 - a$$

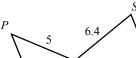
$$m \angle 2 = b$$

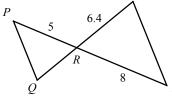
Vertical $\angle s$ are \cong .

Substitution

$$130 + m \angle 3 = 180$$

Straight ∠ measures 180.


$$m \angle 3 = 50$$

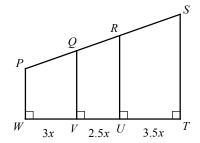

a-b=50

$$180 - a + b + 50 = 180$$

$$230 - a + b = 180$$
$$-a + b = -50$$

7. 10.4

$\overline{PQ} \parallel \overline{ST}$	Given
$m\angle P = m\angle T$	If $\overline{PQ} \parallel \overline{ST}$, alternate
	interior $\angle s$ are \cong .
$m\angle PRQ = m\angle TRS$	Vertical $\angle s$ are \cong .
$\Delta PRQ \sim \Delta TRS$	AA Similarity Postulate
$\frac{PR}{TR} = \frac{RQ}{RS}$	AA Similarity Postulate
$\frac{5}{8} = \frac{RQ}{6.4}$	Substitution


$$8RQ = 5 \times 6.4$$
 Cross Products

$$RQ = 4$$

QS = SR + RQ = 6.4 + 4 = 10.4

294 Chapter 17

8. 45

In the figure above, $\overline{PW} \parallel \overline{QV} \parallel \overline{RU} \parallel \overline{ST}$, because they are all perpendicular to \overline{TW} .

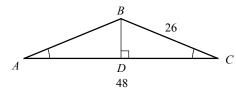
Therefore,
$$\frac{PS}{WT} = \frac{QR}{VU}$$
.

$$\frac{162}{3x + 2.5x + 3.5x} = \frac{QR}{2.5x}$$
 Substitution

$$\frac{162}{9x} = \frac{QR}{2.5x}$$

Simplify.

$$9x(QR) = 162(2.5x)$$


Cross Products

$$9x(QR) = 405x$$

Simplify.

$$QR = 45$$

9. 240

Draw \overline{BD} perpendicular to \overline{AC} . Since $\triangle ABC$ is an isosceles triangle, \overline{BD} bisects \overline{AC} .

Therefore,
$$AD = CD = \frac{1}{2}AC = \frac{1}{2}(48) = 24$$
.

$$CD^2 + BD^2 = BC^2$$

Pythagorean Theorem

$$CD^2 + BD^2 = BC^2$$
$$24^2 + BD^2 = 26^2$$

$$576 + BD^2 = 676$$

$$BD^2 = 100$$

$$BD = 10$$

Area of
$$\triangle ABC = \frac{1}{2}(AC)(BD)$$
.
= $\frac{1}{2}(48)(10)$
= 240