CHAPTER 16
 Lines and Angles

16-1. Lines, Segments, and Rays

A line is a straight arrangement of points and extends in two directions without ending.

A line is often named by a lower-case script letter.
Written as: line ℓ, line $P Q$, or $\overleftrightarrow{P Q}$.

If the names of two points on a line are known,
 then the line can be named by those points.

A segment is a part of a line and consists of two endpoints and all points in between.

Written as: segment $P Q$, or $\overline{P Q}$.

A ray is a part of a line. It has one endpoint and extends forever in one direction.

Written as: ray $P Q$ or $\overrightarrow{P Q}$.

Two rays $\overrightarrow{R P}$ and $\overrightarrow{R Q}$ are called opposite rays if points

R, P, and Q are collinear and R is between P and Q.
The length of $\overline{P Q}$, written as $P Q$, is the distance between the point P and point Q.
Segment Addition Postulate
If Q is between P and R, then $P Q+Q R=P R$.

Definition of Midpoint

If M is the midpoint of $\overline{P R}$, then $P M=M R=\frac{1}{2} P R$.
A segment bisector is a line or a segment that intersects a segment at its midpoint.

Line ℓ is a segment bisector.

Example $1 \square$ Points A, B, M and C lie on the line as shown below. Point M is the midpoint of $\overline{A C}$.

a. Which ray is opposite to ray $B C$?
b. If $B M=6$ and $A B=\frac{2}{3} M C$, what is the length of $A M$?

Solution \quad a. Ray $B A$

$$
\begin{aligned}
& \text { b. Let } A B=x \\
& \qquad \begin{array}{l}
A M=A B+B M=x+6 \\
A M=M C \\
x+6=\frac{3}{2} x \\
x=12 \\
A M=x+6=12+6=18
\end{array}
\end{aligned}
$$

$$
A M=A B+B M=x+6 \quad \text { Segment addition postulate }
$$

Definition of midpoint
Substitution. If $A B=\frac{2}{3} M C, M C=\frac{3}{2} A B=\frac{3}{2} x$.
Solve for x.
Substitute and simplify.

Exercises - Lines, Segments, and Rays

1

In the figure above, Q is the midpoint of $P R$. If $P Q=x+3$ and $Q R=2 x-1$, what is the length of segment $P R$?
A) 4
B) 7
C) 11
D) 14

2

Note: Figure not drawn to scale.

On the segment $P S$ above, $P R=12, Q S=16$, and $Q R=\frac{1}{3} P S$. What is the length of $P S$?
A) 19
B) 20
C) 21
D) 22

3

In the figure above, which of the following are opposite rays?
A) Ray $A B$ and Ray $C D$
B) Ray $C A$ and Ray $C D$
C) Ray $D A$ and Ray $A D$
D) Ray $C A$ and Ray $B D$

4

Note: Figure not drawn to scale.

In the figure above, $A B=\frac{2}{3} B C$. What is the length of $A C$?
A) 15
B) 18
C) 21
D) 25

16-2. Angles

Angles are classified according to their measures.
An acute angle measures between 0 and 90 .
Ex. $\angle P O Q$ and $\angle Q O R$
A right angle measures 90.
Ex. $\angle P O R$ and $\angle S O R$
An obtuse angle measures between 90 and 180. Ex. $\angle Q O S$
A straight angle measures 180 .
Ex. $\angle P O S$

Angle Addition Postulate

If C is in the interior of $\angle A O B$, then $m \angle A O B=m \angle A O C+m \angle C O B$.
An angle bisector divides an angle into two congruent angles.

$m \angle A O B=m \angle A O C+m \angle C O B$

If $\overrightarrow{O C}$ is the angle bisector of $\angle A O B$, then $m \angle A O C=m \angle C O B=\frac{1}{2} m \angle A O B$.

Special Pairs of Angles

When two lines intersect, they form two pairs of vertical angles.
Vertical angles are congruent.

$$
\angle 1 \cong \angle 3(m \angle 1=m \angle 3) \quad \angle 2 \cong \angle 4(m \angle 2=m \angle 4)
$$

Two angles whose measures have a sum of 180 are called supplementary angles.
Two angles whose measures have a sum of 90 are called complementary angles.

Example $1 \quad$ In the figure shown at the right, $m \angle P O Q=55$.
Find the each of the following.
a. $m \angle S O T$
b. $m \angle R O T$
c. $m \angle P O T$
d. $m \angle P O R$

Solution
a. $m \angle S O T=m \angle P O Q=55$
b. $m \angle Q O R+m \angle R O T=180$
$90+m \angle R O T=180$
$m \angle R O T=90$
c. $m \angle P O Q+m \angle P O T=180$
$55+m \angle P O T=180$
$m \angle P O T=125$
d. $m \angle P O R=m \angle P O Q+m \angle Q O R$
$m \angle P O R=55+90=145$

Vertical angles are congruent.
Straight angle measures 180.

$$
m \angle Q O R=90
$$

Solve for $m \angle R O T$.
Straight angle measures 180.
$m \angle P O Q=55$
Solve for $m \angle P O T$.
Angle Addition Postulate
Substitution

Exercises - Angles

1

In the figure above, what is the value of x ?
A) 140
B) 160
C) 190
D) 230

2

Note: Figure not drawn to scale.

In the figure above, what is the values of y ?
A) 52
B) 60
C) 68
D) 76

3

Note: Figure not drawn to scale.

In the figure above, ray $O B$ bisects $\angle C O A$. If $m \angle D O B=11 x+6$ and $m \angle C O A=8 x-12$, what is the measure of $\angle D O C$?
A) 92
B) 96
C) 102
D) 108

Note: Figure not drawn to scale.

In the figure above, $m \angle A B E=120^{\circ}$ and $m \angle C B D=135^{\circ}$. What is the measure of $\angle D B E$?
A) 63
B) 68
C) 75
D) 79

16-3. Parallel and Perpendicular Lines

For two parallel lines ℓ and m which are cut by the transversal t :

1) Corresponding Angles are equal in measure.

$$
\begin{array}{ll}
m \angle 1=m \angle 5 & m \angle 2=m \angle 6 \\
m \angle 3=m \angle 7 & m \angle 4=m \angle 8
\end{array}
$$

2) Alternate Interior Angles are equal in measure.

$$
m \angle 3=m \angle 5 \quad m \angle 4=m \angle 6
$$

3) Alternate Exterior Angles are equal in measure.

$$
m \angle 1=m \angle 7 \quad m \angle 2=m \angle 8
$$

4) Consecutive(Same Side) Interior Angles are supplementary.

$$
m \angle 3+m \angle 6=180^{\circ} \quad m \angle 4+m \angle 5=180^{\circ}
$$

Theorem

In a plane, if a line is perpendicular to one of two parallel lines, it is also perpendicular to the other.
If $t \perp \ell$ and $\ell \| m$, then $t \perp m$.

Example $1 \square$ In the figure below, $\ell \| m, r \perp t$ and $m \angle 1=32$. Lines ℓ, r, and t intersect at one point. Find $m \angle 2, m \angle 3, m \angle 4$, and $m \angle 5$.

Solution $\quad \square$	$m \angle 1+m \angle 2=90$	A right angle measures 90.
	$32+m \angle 2=90$	Substitution
	$m \angle 2=58$	Solve for $m \angle 2$.
	$m \angle 2=m \angle 3=58$	Vertical angles are \cong.
	$m \angle 1+m \angle 4+m \angle 3=180$	A straight angle measures 180.
	$32+m \angle 4+58=180$	Substitution
$m \angle 4=90$	Solve for $m \angle 4$.	
	$m \angle 3=m \angle 5=58$	Alternate Interior $\angle s$ are \cong.
	$m \angle 1=m \angle 6=32$	Corresponding $\angle s$ are \cong.

Exercises - Parallel and Perpendicular Lines

1

Note: Figure not drawn to scale

In the figure above, $r \| t$. What is the value of $x+y$?
A) 37
B) 40
C) 43
D) 46

2

In the figure above, $m \| n$. If $a=50$ and $b=120$, what is the value of c ?
A) 50
B) 60
C) 70
D) 80

3

Note: Figure not drawn to scale.

In the figure above, lines ℓ, m, and n are parallel. What is the value of $x+y$?
A) 160
B) 200
C) 230
D) 290

4

In the figure above, $\ell \| m$. What is the value of x ?
A) 30
B) 35
C) 40
D) 45

Chapter 16 Practice Test

1

Note: Figure not drawn to scale.

In the figure above, $\ell \| m$. What is the value of x ?
A) 45
B) 50
C) 55
D) 60

2

Note: Figure not drawn to scale.

In the figure above, $\ell \| m$. What is the value of y ?
A) 120
B) 125
C) 130
D) 135

3

Note: Figure not drawn to scale.

In the figure above, lines ℓ and m are parallel and $\overline{B D}$ bisects $\angle A B C$. What is the value of x ?
A) 54
B) 60
C) 68
D) 72

In the figure above, $\overline{D A} \| \overline{B C}$ and $\overline{A B}$ bisects $\angle D A C$. What is the measure of $\angle B C A$ in terms of a ?
A) $180-a$
B) $2 a-180$
C) $180-2 a$
D) $2 a-90$

5

Note: Figure not drawn to scale.

In the figure above, $\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{D E}$. What is the value of x ?
A) 47
B) 51
C) 55
D) 57

6

In the figure above, $r \| t$. What is the value of $a+b$?
A) 160
B) 175
C) 185
D) 200

In the figure above, what is the value of $x+y$?

8

Note: Figure not drawn to scale.

In the figure above, $\overline{P Q}$ is parallel to $\overline{S T}$. What is the measure of $\angle Q R S$?

Answer Key

Section 16-1

1. D
2. C
3. B
4. D

Section 16-2

1. D
2. A
3. B
4. C

Section 16-3

1. A
2. C
3. D
4. B

Chapter 16 Practice Test

1. C
2. B
3. A
4. C
5. A
6. D
7. 540
8. 105

Answers and Explanations

Section 16-1

1. D

$$
\begin{aligned}
& P Q=Q R \quad \text { Definition of Midpoint } \\
& x+3=2 x-1 \quad \text { Substitution } \\
& x+3-x=2 x-1-x \quad \text { Subtract } x \text { from each side. } \\
& 3=x-1 \quad \text { Simplify. } \\
& 4=x \\
& P R=P Q+Q R \quad \text { Segment Addition Postulate } \\
& =x+3+2 x-1 \quad \text { Substitution } \\
& =3 x+2 \\
& =3(4)+2=14 \quad x=4
\end{aligned}
$$

2. C

Note: Figure not drawn to scale.
Let $P S=x$, then $Q R=\frac{1}{3} P S=\frac{1}{3} x$.

$$
\begin{array}{ll}
P R=P Q+Q R & \text { Segment Addition Postulate } \\
12=P Q+\frac{1}{3} x & P R=12 \text { and } Q R=\frac{1}{3} x \\
P Q=12-\frac{1}{3} x & \text { Solve for } P Q . \\
Q S=Q R+R S & \text { Segment Addition Postulate }
\end{array}
$$

$16=\frac{1}{3} x+R S \quad Q S=16$ and $Q R=\frac{1}{3} x$
$R S=16-\frac{1}{3} x \quad$ Solve for $R S$.
$P S=P Q+Q R+R S \quad$ Segment Addition Postulate
$x=\left(12-\frac{1}{3} x\right)+\frac{1}{3} x+\left(16-\frac{1}{3} x\right) \quad$ Substitution
$x=28-\frac{1}{3} x \quad$ Simplify.
$\frac{4}{3} x=28 \quad$ Add $\frac{1}{3} x$ to each side.
$\frac{3}{4} \cdot \frac{4}{3} x=\frac{3}{4} \cdot 28 \quad$ Multiply $\frac{3}{4}$ by each side.
$x=21$
Therefore, $P S=x=21$.
3. B

Ray $C A$ and Ray $C D$ are opposite rays, because points A, C, and D are collinear and C is between A and D.
4. D

Note: Figure not drwan to scale.

$$
\begin{array}{rlrl}
A B & =\frac{2}{3} B C & & \text { Given } \\
x+3 & =\frac{2}{3}(3 x-6) & & \text { Substitution } \\
x+3 & =2 x-4 & & \text { Simplify. } \\
\begin{aligned}
7 & = & & \\
A C & =A B+B C & & \text { Solve for } x . \\
& =x+3+3 x-6 & & \text { Substitution } \\
& =4 x-3 & & \text { Simplify. } \\
& =4(7)-3 & & x=7 \\
& =25 & &
\end{aligned}
\end{array}
$$

Section 16-2

1. D

$40+x-90=180$	Straight \angle measures 180.
$x-50=180$	Simplify.
$x-50+50=180+50$	Add 50 to each side.
$x=230$	

2. A

Note: Figure not drawn to scale.

$$
\begin{aligned}
& x+5 x-12=180 \\
& 6 x-12=180 \\
& 6 x=192 \\
& x=32 \\
& x+3 y-8=180 \\
& 32+3 y-8=180
\end{aligned} \quad \text { Straight } \angle \text { measures } 180 .
$$

3. B

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle B O A=\frac{1}{2} m \angle C O A & \text { Definition of } \angle \text { bisector } \\
m \angle B O A=\frac{1}{2}(8 x-12) & \text { Substitution } \\
m \angle B O A=4 x-6 & \text { Simplify. } \\
m \angle D O B+m \angle B O A=180 & \text { Straight } \angle \text { measures } 180 . \\
11 x+6+4 x-6=180 & \text { Substitution } \\
15 x=180 & \text { Simplify. } \\
x=12 &
\end{array}
$$

Thus, $m \angle C O A=8 x-12=8(12)-12=84$.

$$
\begin{aligned}
& m \angle D O C+m \angle C O A=180 \text { Straight } \angle \text { measures } 180 . \\
& m \angle D O C+84=180 \quad m \angle C O A=84 \\
& m \angle D O C=96
\end{aligned}
$$

4. C

Note: Figure not drawn to scale.
$\begin{array}{ll}\text { Let } m \angle D B E=x & \\ m \angle A B E & \\ =m \angle A B D+m \angle D B E & \text { Angle Addition Postulate } \\ 120=m \angle A B D+x & \text { Substitution } \\ 120-x=m \angle A B D & \\ m \angle A B D+m \angle C B D=180 & \text { Straight } \angle \text { measures } 180 . \\ \begin{array}{ll}120-x+135=180 & \text { Substitution } \\ 255-x=180 & \text { Simplify. } \\ x=75 & \end{array} .\end{array}$
Therefore, $m \angle D B E=x=75$.

Section 16-3

1. A

Note: Figure not drawn to scale

$$
\left.\begin{array}{ll}
5 x+4+3 x=180 & \text { If } r \| t, \text { consecutive interior } \\
\angle s \text { are supplementary. }
\end{array}\right] \begin{array}{ll}
8 x+4=180 & \text { Simplify. } \\
8 x=176 & \\
x=22 & \\
5 x+4+5 y-9=180 & \text { Straight } \angle \text { measures } 180 . \\
5 x-5+5 y=180 & \text { Simplify. } \\
5(22)-5+5 y=180 & x=22 \\
110-5+5 y=180 & \text { Simplify. } \\
105+5 y=180 & \text { Simplify. } \\
5 y=75 & \text { Simplify. } \\
y=15 &
\end{array}
$$

Therefore, $x+y=22+15=37$.
2. C

$m \angle 1=a$	If $m \\| n$, correspondi are \cong. $m \angle 1=50$ $m=50$ $m \angle 2=b$ Vertical $\angle s$ are \cong. $m \angle 2=120$ $b=120$

$$
\begin{aligned}
& m \angle 2+m \angle 3=180 \\
& 120+m \angle 3=180 \\
& m \angle 3=60 \\
& m \angle 1+c+m \angle 3=180 \\
& 50+c+60=180 \\
& c+110=180 \\
& c=70
\end{aligned}
$$

3. D

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle 1=x & \text { If } m \| n, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle 2=y & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle 1+m \angle 2+70=360 & \text { There are } 360^{\circ} \text { in a circle. } \\
x+y+70=360 & m \angle 1=x \text { and } m \angle 2=y \\
x+y=290 &
\end{array}
$$

4. B

$$
\begin{aligned}
& m \angle 1=55 \\
& m \angle 1+x=90 \\
& 55+x=90 \\
& x=35
\end{aligned}
$$

Chapter 16 Practice Test

1. C

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
50+x+75=180 & \text { If } \ell \| m, \\
& \angle s \text { are su } \\
125+x=180 & \text { Simplify. } \\
x=55
\end{array} \quad .
$$

2. B

Note: Figure not drwan to scale.

$$
\begin{array}{ll}
y=2 x+15 & \text { If } \ell \| m, \text { consecutive interior } \\
& \angle s \text { are supplementary. } \\
x+y=180 & \text { Straight } \angle \text { measures } 180 . \\
x+(2 x+15)=180 & y=2 x+15 \\
3 x+15=180 & \text { Simplify. } \\
3 x=165 & \\
x=55 &
\end{array}
$$

Therefore, $y=2 x+15=2(55)+15=125$.
3. A

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle A B C=108 & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle D B C=\frac{1}{2} m \angle A B C & \text { Definition of } \angle \text { bisector } \\
m \angle D B C=\frac{1}{2}(108) & m \angle A B C=108 \\
m \angle D B C=54 & \text { Simplify. } \\
x=m \angle D B C & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong \\
x=54 & m \angle D B C=54
\end{array}
$$

4. C

```
\(m \angle B A C=m \angle D A B\)
\(m \angle B A C=a \quad m \angle D A B=a\)
```

Since straight angles measure 180 ,
$m \angle D A E+m \angle D A B+m \angle B A C=180$.
$m \angle D A E+a+a=180 \quad m \angle D A B=m \angle B A C=a$
$m \angle D A E=180-2 a \quad$ Subtract $2 a$.
$m \angle B C A=m \angle D A E \quad$ If $D A \| B C$, corresponding $\angle s$ are \cong.
$m \angle B C A=180-2 a \quad m \angle D A E=180-2 a$
5. A

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle B C A=m \angle D E C & \text { If } D E \| B C, \text { corresponding } \\
& \angle s \text { are } \cong . \\
m \angle B C A=65 & m \angle D E C=65 \\
m \angle D C E=x & \text { If } A B \| C D, \text { corresponding } \\
& \angle s \text { are } \cong .
\end{array}
$$

Since straight angles measure 180, $m \angle B C A+m \angle B C D+m \angle D C E=180$.
$65+68+x=180$
Substitution
$133+x=180$ Simplify.
$x=47$
6. D

$$
\begin{array}{ll}
c=35 & \text { Vertical } \angle s \text { are } \cong . \\
a+c=90 & \angle a \text { and } \angle c \text { are complement } \\
a+35=90 & c=35 \\
a=55 & \\
b+c=180 & \text { If } r \| t, \text { consecutive interior } \\
& \angle s \text { are supplementary. } \\
b+35=180 & c=35 \\
b=145 &
\end{array}
$$

Therefore, $a+b=55+145=200$.

Draw $\angle a$.

$$
\begin{array}{ll}
x+a=360 & 360^{\circ} \text { in a circle. } \\
x=360-a & \text { Subtract } a \text { from each side. } \\
y-a=180 & \text { Straight } \angle \text { measures } 180 . \\
y=180+a & \text { Add } a \text { to each side. }
\end{array}
$$

Therefore, $x+y=(360-a)+(180+a)=540$.
8. 105

Note: Figure not drawn to scale.
Draw $\overline{R U}$, which is parallel to $\overline{P Q}$ and $\overline{S T}$.
If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m \angle P Q R+m \angle Q R U=180$ and
$m \angle R S T+m \angle U R S=180$.

$$
\begin{array}{lc}
110+m \angle Q R U=180 & m \angle P Q R=110 \\
m \angle Q R U=70 & \text { Subtract } 110 . \\
145+m \angle U R S=180 & m \angle R S T=145 \\
m \angle U R S=35 & \text { Subtract } 145 .
\end{array}
$$

By the Angle Addition Postulate, $m \angle Q R S=m \angle Q R U+m \angle U R S$.
Substituting 70 for $m \angle Q R U$ and 35 for $m \angle Q R U$ gives $m \angle Q R S=70+35=105$.

