Answer Key

Section 16-1

1. D
2. C
3. B
4. D

Section 16-2

1. D
2. A
3. B
4. C

Section 16-3

1. A
2. C
3. D
4. B

Chapter 16 Practice Test

1. C
2. B
3. A
4. C
5. A
6. D
7. 540
8. 105

Answers and Explanations

Section 16-1

1. D

$$
\begin{aligned}
& P Q=Q R \quad \text { Definition of Midpoint } \\
& x+3=2 x-1 \quad \text { Substitution } \\
& x+3-x=2 x-1-x \quad \text { Subtract } x \text { from each side. } \\
& 3=x-1 \quad \text { Simplify. } \\
& 4=x \\
& P R=P Q+Q R \quad \text { Segment Addition Postulate } \\
& =x+3+2 x-1 \quad \text { Substitution } \\
& =3 x+2 \\
& =3(4)+2=14 \quad x=4
\end{aligned}
$$

2. C

Note: Figure not drawn to scale.
Let $P S=x$, then $Q R=\frac{1}{3} P S=\frac{1}{3} x$.

$$
\begin{array}{ll}
P R=P Q+Q R & \text { Segment Addition Postulate } \\
12=P Q+\frac{1}{3} x & P R=12 \text { and } Q R=\frac{1}{3} x \\
P Q=12-\frac{1}{3} x & \text { Solve for } P Q . \\
Q S=Q R+R S & \text { Segment Addition Postulate }
\end{array}
$$

$16=\frac{1}{3} x+R S \quad Q S=16$ and $Q R=\frac{1}{3} x$
$R S=16-\frac{1}{3} x \quad$ Solve for $R S$.
$P S=P Q+Q R+R S \quad$ Segment Addition Postulate
$x=\left(12-\frac{1}{3} x\right)+\frac{1}{3} x+\left(16-\frac{1}{3} x\right) \quad$ Substitution
$x=28-\frac{1}{3} x \quad$ Simplify.
$\frac{4}{3} x=28 \quad$ Add $\frac{1}{3} x$ to each side.
$\frac{3}{4} \cdot \frac{4}{3} x=\frac{3}{4} \cdot 28 \quad$ Multiply $\frac{3}{4}$ by each side.
$x=21$
Therefore, $P S=x=21$.
3. B

Ray $C A$ and Ray $C D$ are opposite rays, because points A, C, and D are collinear and C is between A and D.
4. D

Note: Figure not drwan to scale.

$$
\begin{array}{rlrl}
A B & =\frac{2}{3} B C & & \text { Given } \\
x+3 & =\frac{2}{3}(3 x-6) & & \text { Substitution } \\
x+3 & =2 x-4 & & \text { Simplify. } \\
\begin{aligned}
7 & = & & \\
A C & =A B+B C & & \text { Solve for } x . \\
& =x+3+3 x-6 & & \text { Substitution } \\
& =4 x-3 & & \text { Simplify. } \\
& =4(7)-3 & & x=7 \\
& =25 & &
\end{aligned}
\end{array}
$$

Section 16-2

1. D

$40+x-90=180$	Straight \angle measures 180.
$x-50=180$	Simplify.
$x-50+50=180+50$	Add 50 to each side.
$x=230$	

2. A

Note: Figure not drawn to scale.

$$
\begin{aligned}
& x+5 x-12=180 \\
& 6 x-12=180 \\
& 6 x=192 \\
& x=32 \\
& x+3 y-8=180 \\
& 32+3 y-8=180
\end{aligned} \quad \text { Straight } \angle \text { measures } 180 .
$$

3. B

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle B O A=\frac{1}{2} m \angle C O A & \text { Definition of } \angle \text { bisector } \\
m \angle B O A=\frac{1}{2}(8 x-12) & \text { Substitution } \\
m \angle B O A=4 x-6 & \text { Simplify. } \\
m \angle D O B+m \angle B O A=180 & \text { Straight } \angle \text { measures } 180 . \\
11 x+6+4 x-6=180 & \text { Substitution } \\
15 x=180 & \text { Simplify. } \\
x=12 &
\end{array}
$$

Thus, $m \angle C O A=8 x-12=8(12)-12=84$.

$$
\begin{aligned}
& m \angle D O C+m \angle C O A=180 \text { Straight } \angle \text { measures } 180 . \\
& m \angle D O C+84=180 \quad m \angle C O A=84 \\
& m \angle D O C=96
\end{aligned}
$$

4. C

Note: Figure not drawn to scale.
$\begin{array}{ll}\text { Let } m \angle D B E=x & \\ m \angle A B E & \\ =m \angle A B D+m \angle D B E & \text { Angle Addition Postulate } \\ 120=m \angle A B D+x & \text { Substitution } \\ 120-x=m \angle A B D & \\ m \angle A B D+m \angle C B D=180 & \text { Straight } \angle \text { measures } 180 . \\ \begin{array}{ll}120-x+135=180 & \text { Substitution } \\ 255-x=180 & \text { Simplify. } \\ x=75 & \end{array} .\end{array}$
Therefore, $m \angle D B E=x=75$.

Section 16-3

1. A

Note: Figure not drawn to scale

$$
\left.\begin{array}{ll}
5 x+4+3 x=180 & \text { If } r \| t, \text { consecutive interior } \\
\angle s \text { are supplementary. }
\end{array}\right] \begin{array}{ll}
8 x+4=180 & \text { Simplify. } \\
8 x=176 & \\
x=22 & \\
5 x+4+5 y-9=180 & \text { Straight } \angle \text { measures } 180 . \\
5 x-5+5 y=180 & \text { Simplify. } \\
5(22)-5+5 y=180 & x=22 \\
110-5+5 y=180 & \text { Simplify. } \\
105+5 y=180 & \text { Simplify. } \\
5 y=75 & \text { Simplify. } \\
y=15 &
\end{array}
$$

Therefore, $x+y=22+15=37$.
2. C

$m \angle 1=a$	If $m \\| n$, correspondi are \cong. $m \angle 1=50$ $m=50$ $m \angle 2=b$ Vertical $\angle s$ are \cong. $m \angle 2=120$ $b=120$

$$
\begin{aligned}
& m \angle 2+m \angle 3=180 \\
& 120+m \angle 3=180 \\
& m \angle 3=60 \\
& m \angle 1+c+m \angle 3=180 \\
& 50+c+60=180 \\
& c+110=180 \\
& c=70
\end{aligned}
$$

3. D

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle 1=x & \text { If } m \| n, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle 2=y & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle 1+m \angle 2+70=360 & \text { There are } 360^{\circ} \text { in a circle. } \\
x+y+70=360 & m \angle 1=x \text { and } m \angle 2=y \\
x+y=290 &
\end{array}
$$

4. B

$$
\begin{aligned}
& m \angle 1=55 \\
& m \angle 1+x=90 \\
& 55+x=90 \\
& x=35
\end{aligned}
$$

Chapter 16 Practice Test

1. C

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
50+x+75=180 & \text { If } \ell \| m, \\
& \angle s \text { are su } \\
125+x=180 & \text { Simplify. } \\
x=55
\end{array} \quad .
$$

2. B

Note: Figure not drwan to scale.

$$
\begin{array}{ll}
y=2 x+15 & \text { If } \ell \| m, \text { consecutive interior } \\
& \angle s \text { are supplementary. } \\
x+y=180 & \text { Straight } \angle \text { measures } 180 . \\
x+(2 x+15)=180 & y=2 x+15 \\
3 x+15=180 & \text { Simplify. } \\
3 x=165 & \\
x=55 &
\end{array}
$$

Therefore, $y=2 x+15=2(55)+15=125$.
3. A

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle A B C=108 & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong . \\
m \angle D B C=\frac{1}{2} m \angle A B C & \text { Definition of } \angle \text { bisector } \\
m \angle D B C=\frac{1}{2}(108) & m \angle A B C=108 \\
m \angle D B C=54 & \text { Simplify. } \\
x=m \angle D B C & \text { If } \ell \| m, \text { alternate interior } \\
& \angle s \text { are } \cong \\
x=54 & m \angle D B C=54
\end{array}
$$

4. C

```
\(m \angle B A C=m \angle D A B\)
\(m \angle B A C=a \quad m \angle D A B=a\)
```

Since straight angles measure 180 ,
$m \angle D A E+m \angle D A B+m \angle B A C=180$.
$m \angle D A E+a+a=180 \quad m \angle D A B=m \angle B A C=a$
$m \angle D A E=180-2 a \quad$ Subtract $2 a$.
$m \angle B C A=m \angle D A E \quad$ If $D A \| B C$, corresponding $\angle s$ are \cong.
$m \angle B C A=180-2 a \quad m \angle D A E=180-2 a$
5. A

Note: Figure not drawn to scale.

$$
\begin{array}{ll}
m \angle B C A=m \angle D E C & \text { If } D E \| B C, \text { corresponding } \\
& \angle s \text { are } \cong . \\
m \angle B C A=65 & m \angle D E C=65 \\
m \angle D C E=x & \text { If } A B \| C D, \text { corresponding } \\
& \angle s \text { are } \cong .
\end{array}
$$

Since straight angles measure 180, $m \angle B C A+m \angle B C D+m \angle D C E=180$.
$65+68+x=180$
Substitution
$133+x=180$ Simplify.
$x=47$
6. D

$$
\begin{array}{ll}
c=35 & \text { Vertical } \angle s \text { are } \cong . \\
a+c=90 & \angle a \text { and } \angle c \text { are complement } \\
a+35=90 & c=35 \\
a=55 & \\
b+c=180 & \text { If } r \| t, \text { consecutive interior } \\
& \angle s \text { are supplementary. } \\
b+35=180 & c=35 \\
b=145 &
\end{array}
$$

Therefore, $a+b=55+145=200$.

Draw $\angle a$.

$$
\begin{array}{ll}
x+a=360 & 360^{\circ} \text { in a circle. } \\
x=360-a & \text { Subtract } a \text { from each side. } \\
y-a=180 & \text { Straight } \angle \text { measures } 180 . \\
y=180+a & \text { Add } a \text { to each side. }
\end{array}
$$

Therefore, $x+y=(360-a)+(180+a)=540$.
8. 105

Note: Figure not drawn to scale.
Draw $\overline{R U}$, which is parallel to $\overline{P Q}$ and $\overline{S T}$.
If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m \angle P Q R+m \angle Q R U=180$ and
$m \angle R S T+m \angle U R S=180$.

$$
\begin{array}{lc}
110+m \angle Q R U=180 & m \angle P Q R=110 \\
m \angle Q R U=70 & \text { Subtract } 110 . \\
145+m \angle U R S=180 & m \angle R S T=145 \\
m \angle U R S=35 & \text { Subtract } 145 .
\end{array}
$$

By the Angle Addition Postulate, $m \angle Q R S=m \angle Q R U+m \angle U R S$.
Substituting 70 for $m \angle Q R U$ and 35 for $m \angle Q R U$ gives $m \angle Q R S=70+35=105$.

