Answer Key

Section 16	5-1			
1. D	2. C	3. B	4. D	
Section 16-2				
1. D	2. A	3. B	4. C	
Section 16-3				
1. A	2. C	3. D	4. B	
Chapter 16 Practice Test				
1. C	2. B	3. A	4. C	5. A
6. D	7.540	8.105		

Answers and Explanations

Section 16-1

1. D

$$x+3 \qquad 2x-1$$

$$PQ = QR \qquad Definition of Midpoint$$

$$x+3 = 2x-1 \qquad Substitution$$

$$x+3-x = 2x-1-x \qquad Subtract x \text{ from each side.}$$

$$3 = x-1 \qquad Simplify.$$

$$4 = x$$

$$PR = PQ + QR \qquad Segment Addition Postulate$$

$$= x+3+2x-1 \qquad Substitution$$

2. C

= 3x + 2= 3(4) + 2 = 14

x = 4

Let $PS = x$, then QR	$=\frac{1}{3}PS=\frac{1}{3}x.$
PR = PQ + QR	Segment Addition Postulate
$12 = PQ + \frac{1}{3}x$	$PR = 12$ and $QR = \frac{1}{3}x$
$PQ = 12 - \frac{1}{3}x$	Solve for PQ.
QS = QR + RS	Segment Addition Postulate

$$16 = \frac{1}{3}x + RS$$

$$QS = 16 \text{ and } QR = \frac{1}{3}x$$

$$RS = 16 - \frac{1}{3}x$$

$$Solve \text{ for } RS$$

$$PS = PQ + QR + RS$$
Segment Addition Postulate
$$x = (12 - \frac{1}{3}x) + \frac{1}{3}x + (16 - \frac{1}{3}x)$$
Substitution
$$x = 28 - \frac{1}{3}x$$
Simplify.
$$\frac{4}{3}x = 28$$
Add $\frac{1}{3}x$ to each side .
$$\frac{3}{4} \cdot \frac{4}{3}x = \frac{3}{4} \cdot 28$$
Multiply $\frac{3}{4}$ by each side.
$$x = 21$$
Therefore, $PS = x = 21$.

3. B

Ray CA and Ray CD are opposite rays, because points A, C, and D are collinear and C is between A and D.

4. D

$$A \qquad B \qquad C$$

Note: Figure not drwan to scale.

$$AB = \frac{2}{3}BC$$
 Given

$$x + 3 = \frac{2}{3}(3x - 6)$$
 Substitution

$$x + 3 = 2x - 4$$
 Simplify.

$$7 = x$$
 Solve for x.

$$AC = AB + BC$$
 Segment Addition Postulate

$$= x + 3 + 3x - 6$$
 Substitution

$$= 4x - 3$$
 Simplify.

$$= 4(7) - 3$$

$$x = 7$$

$$= 25$$

Section 16-2

1. D

40+x-90 = 180 Straight ∠ measures 180. x-50 = 180 Simplify. x-50+50 = 180+50 Add 50 to each side. x = 230 2. A

3. B

Note: Figure not drawn to scale.

$m \angle BOA = \frac{1}{2}m \angle COA$	Definition of \angle bisector
$m \angle BOA = \frac{1}{2}(8x - 12)$	Substitution
$m \angle BOA = 4x - 6$	Simplify.
$m \angle DOB + m \angle BOA = 180$	Straight \angle measures 180.
11x + 6 + 4x - 6 = 180	Substitution
15x = 180	Simplify.
<i>x</i> = 12	

Thus, $m \angle COA = 8x - 12 = 8(12) - 12 = 84$.

 $m \angle DOC + m \angle COA = 180$ Straight \angle measures 180. $m \angle DOC + 84 = 180$ $m \angle COA = 84$ $m \angle DOC = 96$

Let
$$m \angle DBE = x$$

 $m \angle ABE$
 $= m \angle ABD + m \angle DBE$ Angle Addition Postulate
 $120 = m \angle ABD + x$ Substitution
 $120 - x = m \angle ABD$
 $m \angle ABD + m \angle CBD = 180$ Straight \angle measures 180.
 $120 - x + 135 = 180$ Substitution
 $255 - x = 180$ Simplify.
 $x = 75$

Therefore, $m \angle DBE = x = 75$.

Section 16-3

1. A

Note: Figure not drawn to scale

5x + 4 + 3x = 180	If $r \parallel t$, consecutive interior
	$\angle s$ are supplementary.
8x + 4 = 180	Simplify.
8x = 176	
<i>x</i> = 22	
5x + 4 + 5y - 9 = 180	Straight \angle measures 180.
5x - 5 + 5y = 180	Simplify.
5(22) - 5 + 5y = 180	<i>x</i> = 22
110 - 5 + 5y = 180	Simplify.
105 + 5y = 180	Simplify.
5 <i>y</i> = 75	Simplify.
<i>y</i> = 15	

Therefore, x + y = 22 + 15 = 37.

 $m \angle 1 = a$ If $m \parallel n$, corresponding $\angle s$ $m \angle 1 = 50$ a = 50 $m \angle 2 = b$ Vertical $\angle s$ are \cong . $m \angle 2 = 120$ b = 120

$m\angle 2 + m\angle 3 = 180$	If $m \parallel n$, consecutive interior
	$\angle s$ are supplementary.
$120 + m \angle 3 = 180$	$m \angle 2 = 120$
$m \angle 3 = 60$	
(1 (2 100	Q
$m \angle 1 + c + m \angle 3 = 180$	Straight \angle measures 180.
$m \angle 1 + c + m \angle 3 = 180$ 50 + c + 60 = 180	Straight \angle measures 180. $m \angle 1 = 50$ and $m \angle 3 = 60$
	e

3. D

Note: Figure not drawn to scale.

$m \angle 1 = x$	If $m \parallel n$, alternate interior
$m \angle 2 = v$	$\angle s$ are \cong . If $\ell \parallel m$, alternate interior
m_2 - y	$\angle s$ are \cong .
$m \angle 1 + m \angle 2 + 70 = 360$	There are 360° in a circle.
x + y + 70 = 360	$m \angle 1 = x$ and $m \angle 2 = y$
x + y = 290	

4. B

Chapter 16 Practice Test

x = 35

1. C $\begin{pmatrix} \ell & m \\ & & \\$

Note: Figure not drawn to scale.

$$50 + x + 75 = 180$$
If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary. $125 + x = 180$ Simplify. $x = 55$

2. B

Note: Figure not drwan to scale.

y = 2x + 15	If $\ell \parallel m$, consecutive interior
	$\angle s$ are supplementary.
x + y = 180	Straight \angle measures 180.
x + (2x + 15) = 180	y = 2x + 15
3x + 15 = 180	Simplify.
3x = 165	
<i>x</i> = 55	

Therefore, y = 2x + 15 = 2(55) + 15 = 125.

3. A

Note: Figure not drawn to scale.

$$m \angle ABC = 108$$
If $\ell \parallel m$, alternate interior
 $\angle s$ are \cong . $m \angle DBC = \frac{1}{2}m \angle ABC$ Definition of \angle bisector $m \angle DBC = \frac{1}{2}(108)$ $m \angle ABC = 108$ $m \angle DBC = 54$ Simplify. $x = m \angle DBC$ If $\ell \parallel m$, alternate interior
 $\angle s$ are \cong . $x = 54$ $m \angle DBC = 54$

4. C

$m \angle BAC = m \angle DAB$ $m \angle BAC = a$	Definition of \angle bisector $m \angle DAB = a$	
Since straight angles measure 180, $m \angle DAE + m \angle DAB + m \angle BAC = 180$.		
$m \angle DAE + a + a = 180$ $m \angle DAE = 180 - 2a$	$m \angle DAB = m \angle BAC = a$ Subtract $2a$.	
$m \angle BCA = m \angle DAE$	If $DA \parallel BC$, corresponding	

 $m \angle BCA = 180 - 2a \qquad \qquad m \angle DAE = 180 - 2a$

5. A

Note: Figure not drawn to scale.

$m \angle BCA = m \angle DEC$	If $DE \parallel BC$, corresponding
	$\angle s$ are \cong .
$m \angle BCA = 65$	$m \angle DEC = 65$
$m \angle DCE = x$	If $AB \parallel CD$, corresponding
	$\angle s$ are \cong .

Since straight angles measure 180, $m\angle BCA + m\angle BCD + m\angle DCE = 180$.

65 + 68 + x = 180	Substitution
133 + x = 180	Simplify.
x = 47	

6. D

c = 35Vertical $\angle s$ are \cong .a + c = 90 $\angle a$ and $\angle c$ are complementary.a + 35 = 90c = 35a = 55If r || t, consecutive interiorb + c = 180If r || t, consecutive interior $\angle s$ are supplementary.b + 35 = 180c = 35b = 145

Therefore, a + b = 55 + 145 = 200.

Draw $\angle a$.

x + a = 360	360° in a circle.
x = 360 - a	Subtract <i>a</i> from each side.
y - a = 180	Straight ∠ measures 180.
y = 180 + a	Add <i>a</i> to each side.

Therefore, x + y = (360 - a) + (180 + a) = 540.

Note: Figure not drawn to scale.

Draw \overline{RU} , which is parallel to \overline{PQ} and \overline{ST} .

If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m \angle PQR + m \angle QRU = 180$ and $m \angle RST + m \angle URS = 180$.

$110 + m \angle QRU = 180$	$m \angle PQR = 110$
$m \angle QRU = 70$	Subtract 110.
$145 + m \angle URS = 180$	$m \angle RST = 145$
$m \angle URS = 35$	Subtract 145.

By the Angle Addition Postulate, $m \angle QRS = m \angle QRU + m \angle URS$.

Substituting 70 for $m \angle QRU$ and 35 for $m \angle QRU$ gives $m \angle QRS = 70 + 35 = 105$.