Answer Key

Section 7-1

1. C
2. A
3. B
4. B
5. C
6. 5000
7. 16

Section 7-2

1. 25
2. 1.5
3. 0.9
4. 75
5. 4800
6. B
7. D
8. D

Section 7-3

1. D
2. A
3. C
4. C
5. 80
6. 218

Chapter 7 Practice Test

1. D
2. C
3. C
4. B
5. D
6. C
7. D
8. A
9. C
10. 2.7
11. 684
12. 38.4

Answers and Explanations

Section 7-1

1. C

$$
0.03 \% \text { of } 4=0.03 \times \frac{1}{100} \times 4=0.0012
$$

2. A

$$
\frac{1}{400}=\frac{1}{400} \times 100 \%=\frac{1}{4} \%=0.25 \%
$$

3. B

$$
\begin{array}{ll}
x-0.2 x & x \text { is decreased by } 20 \text { percent. } \\
=0.8 x & \text { Simplify. } \\
y+0.2 y & y \text { is increased by } 20 \text { percent. } \\
=1.2 y & \text { Simplify. }
\end{array}
$$

The product of decreased x and increased y is $0.8 x \times 1.2 y=0.96 x y$. So, the product is decreased by 4 percent.
4. B

Divide 4.5×10^{5} by 9×10^{4}.
$\frac{4.5 \times 10^{5}}{9 \times 10^{4}}=5$
So, $4.5 \times 10^{5}=\left(9 \times 10^{4}\right) \times 5=9 \times 10^{4}+4\left(9 \times 10^{4}\right)$

$$
=9 \times 10^{4}+400 \%\left(9 \times 10^{4}\right) .
$$

Therefore, 4.5×10^{5} is 400% greater than 9×10^{4}.
5. C

Percent increase $=\frac{\text { amount of increase }}{\text { original amount }}$

$$
=\frac{72-60}{60}=\frac{12}{60}=\frac{1}{5}=0.2=20 \%
$$

6. 5000

Let $x=$ last year's enrollment in Mesa School
District.
$\underbrace{6000}_{\text {this year's enrollment }}=\underbrace{x+0.2 x}_{20 \% \text { more than last year's enrollment }}$
$6000=1.2 x$
$x=\frac{6000}{1.2}=5000$
7. 16

$$
\begin{array}{ll}
1.25 x=80 & 125 \% \text { of } x \text { is } 80 . \\
x=\frac{80}{1.25}=64 & \text { Solve for } x . \\
x=n \% \times 400 & x \text { is } n \% \text { of } 400 . \\
x=n \times \frac{1}{100} \times 400 & \text { Percent means } \frac{1}{100} . \\
x=n \times 4 & \text { Simplify. } \\
64=n \times 4 & \text { Substitute } 64 \text { for } x . \\
16=n & \text { Divide each side by } 4 .
\end{array}
$$

Section 7-2

1. 25

$$
\begin{array}{ll}
\frac{28}{100} \times n=7 & 28 \% \text { of a number is } 7 . \\
n=7 \times \frac{100}{28} & \text { Multiply each side by } \frac{100}{28} . \\
n=25 & \text { Simplify. }
\end{array}
$$

2. 1.5

$3.6=2.4 \times n$	
$\frac{3.6}{3.6}=n$	
$1.5=n$	
1.5240% of a number.	

3. 0.9

$$
\begin{array}{ll}
\frac{1}{2} \times \frac{1}{100} \times 180=n & \frac{1}{2} \% \text { is } \frac{1}{2} \times \frac{1}{100} . \\
\frac{180}{200}=n & \text { Simplify } . \\
0.9=n & \text { Simplify } .
\end{array}
$$

4. 75
$3 \frac{1}{3} \times \frac{1}{100} \times n=2.5 \quad 3 \frac{1}{3} \%$ is $3 \frac{1}{3} \times \frac{1}{100}$.
$\frac{10}{3} \times \frac{1}{100} \times n=2.5 \quad$ Simplify.
$\frac{1}{30} n=2.5 \quad$ Simplify.
$n=2.5 \times 30=75 \quad$ Multiply each side by 30 .
5. 4800
$26.4=0.55 \times \frac{1}{100} \times n \quad 0.55 \%$ is $0.55 \times \frac{1}{100}$.
$26.4=0.0055 n \quad$ Simplify .
$\frac{26.4}{0.0055}=\frac{0.0055 n}{0.0055} \quad$ Divide each side by 0.0055 .
$4800=n \quad$ Simplify.
6. B
$\underbrace{\frac{n}{100}}_{\text {what percent }} \underset{\text { of }}{\times} 12=8$
$n=8 \cdot \frac{100}{12} \Rightarrow n=66 \frac{2}{3}$
8 is $66 \frac{2}{3} \%$ of 12.
7. D

54 is 120% of k.
The above expression can be written as the equation $54=1.2 \times k$. Or it can be written as the proportion $\frac{120}{100}=\frac{54}{k}$.
Choice D is correct.
8. D

Let $x=$ Paul's monthly salary.
$\underbrace{4500}_{\text {Kevin's monthly salary }}=\underbrace{0.72}_{72} \underbrace{x}_{\text {percent of }} \underbrace{x}_{\text {Paul's monthly salary }}$
$4500=0.72 x$
$x=\frac{4500}{0.72}=6250$

Section 7-3

1. D

There are n candies in a jar and one candy is removed. So, $n-1$ candies are left in the jar.
The fraction of candies left in the jar is $\frac{n-1}{n}$. Thus, the percent of candies left in the jar is $\left(\frac{n-1}{n}\right) 100 \%$.
2. A

Let $x=$ the original price of the cellphone. The discounted price is 25% off the original price, so $x-0.25 x$, or $0.75 x$, is the discounted price. After an additional discount of 20% off the first discounted price, the new price is $0.75 x-0.2(0.75 x)$, or $0.6 x$, which is the final price of $\$ 348$. Therefore, $0.6 x=348$.
Solving the equation for x yields $x=580$.
3. C

Let $x=$ the amount of 40% solution to be added.
Let $50-x=$ the amount of 30% solution to be added.
x liters of 40% acid $+(50-x)$ liters of 30% acid
$=50$ liters of 36% acid
$0.4 x+0.3(50-x)=0.36(50)$
$0.4 x+15-0.3 x=18$
$0.1 x+15=18$
$0.1 x=3$
$x=30$
30 liters of 40% acid solution should be added.
4. C

If s is the amount invested in savings and r is the amount invested in bonds, $s+r$ represents the total amount invested, which is equal to $\$ 5,000$. Therefore, $s+r=5000$.
If the amount invested in savings pays 4.5% interest and the amount invested in bonds pays 8% interest, $0.045 s+0.08 r$ represents the total income from investment, which is equal to $\$ 305.50$.
Therefore, $0.045 s+0.08 r=305.50$.
Choice C is correct.

5. 80

Let $x=$ the price of the backpack before adding profit and tax.
After 50% profit the price of the backpack will be $x+0.5 x$, or $1.5 x$.
After 8% tax the price of the backpack will be $1.5 x+.08(1.5 x)$, or $1.62 x$, which is equal to $\$ 129.60$. Therefore, $1.62 x=129.60$. Solving for x yields $x=80$.
The price of the backpack before adding profit and tax was $\$ 80$.

6. 218

The number of male students $=800 \times 0.45=360$.
The number of female students $=800-360=440$.
30% of male students $=360 \times 0.3=108$.
25% of female students $=440 \times 0.25=110$.
The number of students who play varsity sports $=108+110=218$

Chapter 7 Practice Test

1. D

If $x \mathrm{~mL}$ of a 34% acid solution is added to a 10% acid solution and the resulting solution is 40 mL of a 25% solution, then the amount of the 10% acid solution should be $40-x \mathrm{~mL}$.
$x \mathrm{~mL}$ of $34 \% \mathrm{acid}+(40-x) \mathrm{mL}$ of 10% acid
$=40 \mathrm{~mL}$ of 25% acid
$0.34 x+0.1(40-x)=0.25(40)$
$0.34 x+4-0.1 x=10$
$0.24 x=6$
$x=25$
2. C

The cost of 3 packages of pens is $3 \times \$ 8.00$, or $\$ 24$ and the cost of 12 pens bought individually is $12 \times \$ 2.50$, or $\$ 30$. The amount saved is $30-24$ dollars, or $\$ 6$. The percent of savings he saved on 12 pens of the amount he paid is $\frac{6}{24} \cdot 100 \%$, or 25%.
3. C

The number of orange flavored drinks in the store $=600 \times 0.25=150$.
The number of orange flavored drinks sold on Monday $=150 \times 0.3=45$.
Remaining orange flavored drinks $=150-45=105$.

The number of orange flavored drinks sold on Tuesday is 20% of the remaining orange flavored drinks, which is 105×0.2, or 21 . Therefore, the number of bottles of orange flavored drinks sold in the two days is $45+21$, or 66 .
4. B

After 15% discount, the price of the tablet is $x-0.15 x$, or $0.85 x$. After an additional 12% discount, the price of the tablet is $0.85 x-0.12(0.85 x)$, or $0.748 x$.
5. D
$n=$ total number of shoes $m=$ the number of brown shoes. So the number of black shoes is $n-m$. The fraction of black shoes in the store is $\frac{n-m}{n}$, so the percent of black shoes in the store is $\left(\frac{n-m}{n}\right) \times 100 \%$. This is equivalent to $\left(\frac{n}{n}-\frac{m}{n}\right) \times 100 \%$, or $\left(1-\frac{m}{n}\right) \times 100 \%$.
6. C

If b is increased by 150%, it becomes $b+1.5 b$, or $2.5 b$. If c is decreased by 60%, it becomes $c-0.6 c$, or $0.4 c$. Multiplying these new values gives $a=3.2(2.5 b \times 0.4 c)=3.2(b c)$.

Therefore, the value is unchanged.
7. D

If 10 books are increased by x percent, then there will be $10+10 \times \frac{x}{100}$ books, which is equal to 24 .
$10+10 \times \frac{x}{100}=24$
$\Rightarrow 10 \times \frac{x}{100}=14 \Rightarrow \frac{x}{10}=14$
$\Rightarrow x=140$
8. A

Number n is 25 less than 120 percent of itself.
$n=1.2 n-25$
$-0.2 n=-25$
$n=\frac{-25}{-0.2}=125$
9. C

The number of blue cars $=500 \times 0.07=35$
The number of red cars $=500 \times 0.04=20$
Let 35 is n percent greater than 20 .
Then $35=20+20 \cdot \frac{n}{100}$.
$35-20=20+20 \cdot \frac{n}{100}-20$
$15=\frac{1}{5} n$
$75=n$
The number of blue cars is 75% greater than the number of red cars.
10. 2.7
300% of 0.18 is equivalent to 20% of b.
$3 \times 0.18=0.2 b \quad 300 \%=3,20 \%=0.2$
$0.54=0.2 b \quad$ Simplify.
$\frac{0.54}{0.2}=\frac{0.2}{0.2} b \quad$ Divide each side by 0.2 .
$2.7=b \quad$ Simplify.
11.684

Total amount contributed by five people $=\$ 9,000 \times 5=\$ 45,000$.
The price of the sailboat after 8% tax
$=\$ 38,500+0.08 \times \$ 38,500=\$ 41,580$.
The amount that should be refunded
$=\$ 45,000-\$ 41,580=\$ 3,420$.
Dividing $\$ 3,420$ by 5 yields $\$ 684$.
Thus $\$ 684$ should be refunded to each person.
12.38.4

Let $m=$ the wholesale cost of MP3.
The selling price of $\$ 72$ is 50% more than the wholesale cost.

$$
\begin{aligned}
72 & =m+0.5 m \\
72 & =1.5 m \\
48 & =m
\end{aligned}
$$

The special holiday sale of the MP3 was 20% less than the wholesale cost. Therefore, The special price of MP3

$$
\begin{aligned}
& =m-0.2 m \\
& =48-0.2 \times 48 \\
& =38.4
\end{aligned}
$$

The special sale price of the MP3 was \$38.4.

