CHAPTER 6 Ratios, Rates, and Proportions

6-1 Ratios and Rates

A ratio is a comparison of two quantities by division.
The ratio of a to b can be written in three different ways: a to $b, a: b$, and $\frac{a}{b}$.
If two quantities are in the ratio of a to b, then the two numbers can be expressed as $\boldsymbol{a} \boldsymbol{x}$ and $\boldsymbol{b} \boldsymbol{x}$, in which x is a positive integer.

A rate is a ratio of two measurements having different units of measure. For example, a price of $\$ 2.59$ per gallon of gasoline, an income of $\$ 750$ in 3 days, and a speed of 60 miles per hour are all rates.
A unit rate is a rate that has a denominator of 1 . Some examples of unit rates are defined as follows.
Unit Price $=\frac{\text { Price of Package }}{\text { Number of Units in the Package }}$
Gas Mileage $=\frac{\text { Number of Miles Traveled }}{\text { Number of Gallons of Gas Used }}$
Speed $($ Miles per Hour $)=\frac{\text { Number of Miles Traveled }}{\text { Number of Hours }}$
Density $=\frac{\text { Mass }}{\text { Volume }}$

Example $1 \square \quad$ Express each ratio as a unit rate.
a. 1360 grams of coffee cost $\$ 17.68$. What is the unit price of the coffee?
b. A car travels 322 miles on 11.5 gallons of gas. What is the car's gas mileage?
c. A driver traveled $485 \frac{1}{3}$ miles in $8 \frac{2}{3}$ hours. What is his speed?
d. A volume of $46 \mathrm{~cm}^{3}$ of silver has a mass of 483 grams. What is the density of silver?

Solution $\square \quad$ a. $\frac{\$ 17.68}{1360 \text { grams }}=\frac{1768 \text { cents }}{1360 \text { grams }}=1.3$ cents $/ \mathrm{gram}$
b. $\frac{322 \mathrm{mi}}{11.5 \mathrm{gal}}=28$ miles $/$ gallon .
c. $\frac{485 \frac{1}{3} \mathrm{mi}}{8 \frac{2}{3} \mathrm{hr}}=\frac{\left(485 \frac{1}{3} \mathrm{mi}\right) \cdot 3}{\left(8 \frac{2}{3} \mathrm{hr}\right) \cdot 3}=\frac{1456 \mathrm{mi}}{26 \mathrm{hr}}=56 \mathrm{mph}$
d. density $=\frac{\text { mass }}{\text { volume }}=\frac{483 \mathrm{grams}}{46 \mathrm{~cm}^{3}}=10.5 \mathrm{grams} / \mathrm{cm}^{3}$

Example $2 \square 3$ angles of a triangle are in the ratio of $3: 5: 7$. What is the measure of each angle?
Solution $\square \quad$ The measure of each angle of the triangle can be represented as $3 x, 5 x$, and $7 x$.
$3 x+5 x+7 x=180$
The angle sum in a triangle is 180 .
$15 x=180 \quad$ Simplify.
$x=12 \quad$ Simplify.

The measure of the 3 angles are $3 x=3 \cdot 12=36,5 x=5 \cdot 12=60$, and $7 x=7 \cdot 12=84$.

Exercises - Ratios and Rates

1
The ratio of $1 \frac{3}{4}$ to $2 \frac{1}{2}$ is equal to the ratio of 14 to what number?
A) 18
B) 20
C) 22
D) 24

2

The sum of two numbers is 14 and the ratio of the two numbers is -3 . What is the product of the two numbers?
A) -105
B) -119
C) -133
D) -147

3

If $2(x-y)=3 y$, what is the ratio $\frac{x}{y} ?$
A) $\frac{2}{5}$
B) $\frac{4}{3}$
C) $\frac{5}{2}$
D) $\frac{8}{3}$

4
The ratio of length to width of a rectangular garden is $6: 7$. If the perimeter of the rectangle is 78 meters, what is the area of the garden in square meters?
A) 274
B) 326
C) 352
D) 378

5

A car travels 218.5 miles on 9.5 gallons of gas. What is the car's gas mileage?

At a grocery store, 20 fl oz of brand A vitamin water is sold for $\$ 0.95$. What is the unit price of the vitamin water per ounce, to the nearest cents?

7

The density of aluminum is 2.7 grams per cm^{3}. How many grams does $12 \mathrm{~cm}^{3}$ of aluminum weigh?

6-2 Proportions

A proportion is an equation stating that two ratios are equal.
The proportions $\frac{a}{b}=\frac{c}{d}$ is read " a is to b as c is to d." The numbers a and d are called the extremes
of the proportion. The numbers b and c are called the means of the proportion.
In a proportion, the product of the extremes is equal to the product of the means.
If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$. The products $a d$ and $b c$ are called the cross products of the proportion $\frac{a}{b}=\frac{c}{d}$.

Example $1 \quad$ Determine whether each pair of ratios forms a proportion.
a. $\frac{0.4}{1.5}, \frac{1.6}{6}$
b. $\frac{12}{25}, \frac{7}{15}$

Solution
a. $\frac{0.4}{1.5} \stackrel{?}{=} \frac{1.6}{6}$
Write a proportion.
$0.4 \times 6=1.5 \times 1.6 \quad$ Find the cross products.
$2.4=2.4 \quad$ Simplify.

The cross products are equal, so the ratios form a proportion.
b. $\frac{12}{25} \stackrel{?}{=} \frac{7}{15}$
Write a proportion.
$12 \times 15=25 \times 7 \quad$ Find the cross products. $180 \neq 175 \quad$ Simplify.

The cross products are not equal, so the ratios do not form a proportion.

Example $2 \quad$ Solve the proportion $\frac{3}{7}=\frac{6}{x-4}$.

Solution $\quad \frac{3}{7}=\frac{6}{x-4}$

$$
\begin{array}{ll}
3(x-4)=7(6) & \text { Find the cross products. } \\
3 x-12=42 & \text { Distributive Property } \\
3 x=54 & \text { Add } 12 \text { to each side. } \\
x=18 & \text { Divide each side by } 3
\end{array}
$$

Example $3 \quad$ Carter's SUV requires 8 gallons of gasoline to travel 148 miles. How much gasoline, to the nearest gallon, will he need for a 500 mile trip?

Solution \square a. Let $g=$ the number of gallons of gas needed for a 500 mile trip.

$$
\begin{array}{ll}
\text { miles } \rightarrow \frac{148}{8}=\frac{500}{g} \leftarrow \text { miles } & \text { grite a proportion. } \\
\text { gallons } \rightarrow \text { gallons } & \text { Find the cross products. } \\
148 g=8 \times 500 & \\
g=\frac{8 \times 500}{148} \approx 27.03 & \text { Divide each side by } 148
\end{array}
$$

Carter's needs 27 gallons of gas for a 500 mile trip.

Exercises - Proportions

1

On a map, 1 inch represents 5 miles. If a certain state is represented on a map by a rectangle 10 inches by 7.2 inches, what is the area of the state in square miles?
A) $360 \mathrm{mi}^{2}$
B) $720 \mathrm{mi}^{2}$
C) $1,080 \mathrm{mi}^{2}$
D) $1,800 \mathrm{mi}^{2}$

2

Together there are 754 students and teachers in the meeting. If the ratio of students to teachers is $27: 2$, how many teachers are there?
A) 46
B) 52
C) 58
D) 64

3

Concrete is made by mixing cement, sand, and gravel in the ratio $5: 9: 13$. How much cement is needed to make $324 \mathrm{ft}^{3}$ of concrete?
A) $54 \mathrm{ft}^{3}$
B) $60 \mathrm{ft}^{3}$
C) $84 \mathrm{ft}^{3}$
D) $108 \mathrm{ft}^{3}$

4
If Andy drove 84 miles in 1 hour 45 minutes, how many miles can he drive in 5 hours?

5

A collection of quarters, dimes, and nickels is worth $\$ 5.00$. If the ratio of quarters to dimes to nickels is $2: 4: 7$, how many quarters are there?

6

If $\frac{5 x}{3}=\frac{x+14}{2}$, what is the value of x ?

A trail mix contains raisin, peanut, and chocolate. The ratio of raisin to peanut is $2: 3$ and the ratio of peanut to chocolate is $5: 8$. What is the ratio of raisin to chocolate?

6-3 Ratios, Rates, and Proportions Word Problems

You can use conversion factors to convert a unit of measure from one system to another. Sometimes you may need to use two or more conversion factors.

Example $1 \quad$ A model car is scaled so that 1 inch of the model equals 6 feet of the actual car. If the model is $1 \frac{2}{3}$ inch long, how long is the actual car?

Solution \square Let $x=$ the length of actual car.
model $\rightarrow \frac{1 \text { in }}{6 \mathrm{ft}}=\frac{1 \frac{2}{3} \text { in }}{x \mathrm{ft}} \leftarrow$ model
actual \rightarrow actual \quad Set up a proportion.
$x=6 \times 1 \frac{2}{3}=10 \quad$ Cross product
The length of the actual car is 10 feet.

Example $2 \square$ A car is traveling at a constant rate of 54 miles per hour. How many kilometers will the car travel in 5 minutes? $(1$ mile $=1.6$ kilometers $)$

Solution $\quad \square \quad 54$ miles $=54 \mathrm{mi} \times \frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}=86.4 \mathrm{~km}$
$\frac{54 \mathrm{mi}}{1 \mathrm{hr}}=\frac{86.4 \mathrm{~km}}{60 \mathrm{~min}} \quad 54$ miles $=86.4 \mathrm{~km}$ and 1 hour $=60 \mathrm{~min}$
$\frac{86.4 \mathrm{~km}}{60 \mathrm{~min}}=\frac{x \mathrm{~km}}{5 \mathrm{~min}} \quad$ Set up a proportion.
$86.4 \times 5=60 x \quad$ Cross Products
$x=\frac{86.4 \times 5}{60}$
$=7.2 \mathrm{~km}$

Example $3 \square$ The ratio of males to females in an office is $6: 7$. If there are 42 males in the office, what is the total number of people in the office?

Solution \square Let $f=$ the number of females in the office.
male $\rightarrow \frac{6}{7}=\frac{42}{f}$
female
$6 f=7 \cdot 42=294$
Cross products
$f=\frac{294}{6}=49$
The ratio of males to females is 6 to 7 .

Divide.
The total number of people in the office is
$42+49$, or 91 .

Exercises - Ratios, Rates, and Proportions Word Problems

1

If 20 machines produce 1,240 printers in a day, how many more machines are needed to produce 1,984 printers in a day?
A) 12
B) 20
C) 24
D) 32

2
If $\frac{3}{4}$ quart of lemonade concentrate is mixed with $6 \frac{2}{3}$ quarts of water to make lemonade for 40 people, how many quarts of lemonade concentrate are needed to make the lemonade for 24 people?
A) $\frac{3}{10}$
B) $\frac{7}{20}$
C) $\frac{2}{5}$
D) $\frac{9}{20}$

A machine produced 735 tapes in $5 \frac{1}{4}$ hours.
What fraction of the 735 tapes was produced in one hour?
A) $\frac{1}{7}$
B) $\frac{4}{21}$
C) $\frac{5}{21}$
D) $\frac{2}{7}$

4
A 32-acre field yields 768 bushels of corn each year. How many more acres are needed to yield 960 bushels of corn each year?
A) 6
B) 8
C) 10
D) 12

The length of a rectangle is 8 inches longer than the width. If the ratio of the length to perimeter is $5: 16$, what is the area of the rectangle?
A) $160 \mathrm{in}^{2}$
B) $180 \mathrm{in}^{2}$
C) $240 \mathrm{in}^{2}$
D) $280 \mathrm{in}^{2}$

If 12 grams of coffee costs x dollars and each gram makes y cups of coffee, what is the cost of one cup of coffee in terms of x and y ?
A) $\frac{12 y}{x}$
B) $\frac{y}{12 x}$
C) $\frac{12 x}{y}$
D) $\frac{x}{12 y}$

Chapter 6 Practice Test

1

The density of an object is equal to the mass of the object divided by the volume of the object. What is the mass, in grams, of an object with a volume of $0.01 \mathrm{~m}^{3}$ and a density of 4.54 grams per cubic centimeters? $(1 \mathrm{~m}=100 \mathrm{~cm})$
A) 454
B) 4,540
C) 45,400
D) 454,000

2

Jason and Donny painted a house and received $\$ 1,200$. To complete the painting job Jason painted 4 hours 25 minutes and Donny spent 2 hours and 15 minutes. If they split the $\$ 1,200$ in proportion to the amount of time each spent painting, how much did Donny receive?
A) $\$ 405.00$
B) $\$ 443.00$
C) $\$ 472.00$
D) $\$ 492.00$

The tennis balls in a bag are either white or yellow. If the ratio of white balls to yellow balls is $\frac{3}{10}$, which of the following could not be the number of balls in the bag?
A) 26
B) 39
C) 42
D) 52

4
A car is traveling at a constant rate of x miles per hour. How many miles will the car travel in y minutes?
A) $60 x y$
B) $\frac{60 x}{y}$
C) $\frac{x y}{60}$
D) $\frac{y}{60 x}$

A tree is 8 feet tall and grows 8 inches each year. In how many years will the tree reach a height of 30 feet?
A) 27
B) 33
C) 45
D) 52

Aaron reads x pages of a science fiction book in m minutes. If he continues reading at this rate, what will be the number of pages he reads in 20 m seconds?
A) $\frac{1}{3} x$
B) $\frac{1}{2} x$
C) $\frac{2}{3} x$
D) $2 x$

7

If $\frac{x}{y}=1$, what is the value of $x-y-1$?
A) -1
B) 0
C) 1
D) The value cannot be determined from the information given.

8
In a certain room the ratio of males to females is 4 to 5 . After 8 males enter the room, the ratio of males to females is 6 to 5 . What is the total number of people in the room before the additional males enter the room?
A) 27
B) 36
C) 45
D) 54

9
A person is born every 5 seconds and a person dies every 12 seconds. How many seconds does it take for the population to grow by one person?
A) 7 sec
B) $8 \frac{4}{7} \mathrm{sec}$
C) 10.5 sec
D) $10 \frac{5}{7} \mathrm{sec}$

10

Steve is going to paint a wall that measures 9 feet by 12 feet. If one gallon of paint is needed for each s square foot of wall and each gallon costs g dollars, in terms of s and g how much does it cost to paint the entire wall?
A) $\frac{108}{g s}$
B) $\frac{g s}{108}$
C) $\frac{108 s}{g}$
D) $\frac{108 g}{s}$

11

If 2 inches are equivalent to 5 centimeters, how many square centimeters are in one square inch?

A large painting has a length of 18 inches and a width of 12 inches. If each dimension is reduced by x inches to make the ratio of length to width 5 to 3 , what is the value of x ?

Answer Key

Section 6-1

1. B
2. D
3. C
4. D
5. 23
6. 5
7. 32.4

Section 6-2

1. D
2. B
3. B
4. 240
5. 8
6. $6 \quad$ 7. $\frac{5}{12}$

Section 6-3

1. A
2. D
3. B
4. B
5. C
6. D

Chapter 6 Practice Test

1. C
2. A
3. C
4. C
5. B
6. A
7. A
8. B
9. B
10. D
11. $\frac{25}{4}$ or 6.25
12. 3

Answers and Explanations

Section 6-1

1. B

$$
\begin{array}{ll}
\frac{1 \frac{3}{4}}{2 \frac{1}{2}}=\frac{14}{x} & \text { The ratio of } 1 \frac{3}{4} \text { to } 2 \frac{1}{2} \text { is equal } \\
1 \frac{3}{4} \cdot x=14 \cdot 2 \frac{1}{2} & \text { (to the ratio of } 14 \text { to } x . \\
\frac{7}{4} x=14 \cdot \frac{5}{2} & \text { Simplify. } \\
\frac{7}{4} x=35 & \text { Simplify. } \\
\frac{4}{7} \cdot \frac{7}{4} x=\frac{4}{7} \cdot 35 & \text { Multiply each side by } \frac{4}{7} \\
x=20 & \text { Simplify. }
\end{array}
$$

2. D

Let x and y be the two numbers.
$x+y=14 \quad$ The sum of two numbers is 14 .
$\frac{x}{y}=-3 . \quad$ The ratio of the two numbers is -3 .
$\frac{x}{y}=-3 \Rightarrow x=-3 y$

$x+y=14$	First equation
$(-3 y)+y=14$	Substitute $-3 y$ for x.
$-2 y=14$	Simplify.
$y=-7$	

Substitute $y=-7$ in the first equation.
$x+(-7)=14 \Rightarrow x=21$
Therefore the product of the two numbers is $x \cdot y=21 \cdot(-7)=-147$.
3. C
$2(x-y)=3 y$
$2 x-2 y=3 y \quad$ Distributive property
$2 x=5 y \quad$ Add $2 y$ to each side.
$\frac{2 x}{2}=\frac{5 y}{2} \quad$ Divide each side by 2.
$x=\frac{5}{2} y \quad$ Simplify.
$\frac{x}{y}=\frac{\frac{5}{2} y}{y} \quad$ Divide each side by y.
$\frac{x}{y}=\frac{5}{2} \quad$ Simplify.
4. D

Let $6 x=$ the length and $7 x=$ the width of the rectangle.
$P=2 \ell+2 w \quad$ Perimeter of a rectangle.
$78=2(6 x)+2(7 x) \quad P=78, \ell=6 x$, and $w=7 x$
$78=26 x \quad$ Simplify.
$3=x \quad$ Divide each side by 26 .
Therefore, the length of the rectangle is $6 \cdot 3$
or 18 , and the width of the rectangle is $7 \cdot 3$
or 21 . The area of the rectangle is $18 \cdot 21$ or 378 .
5. 23

Gas Mileage $=\frac{\text { Number of Miles Traveled }}{\text { Number of Gallons of Gas Used }}$
$=\frac{218.5}{9.5}=23$
The car's gas mileage is 23 miles per gallon.
6. 5

Unit Price $=\frac{\text { Price of Package }}{\text { Number of Units in the Package }}$
$=\frac{0.95}{20}=0.0475$
The unit price of the vitamin water to the nearest cent is 5 .
7. 32.4

$$
\begin{aligned}
& \text { Density }=\frac{\text { mass }}{\text { volume }} \\
& \frac{2.7 \text { grams }}{1 \mathrm{~cm}^{3}}=\frac{x \text { grams }}{12 \mathrm{~cm}^{3}} \\
& x=2.7 \times 12=32.4 \text { grams }
\end{aligned}
$$

Section 6-2

1. D

Set up a proportion.
$\frac{1 \text { inch }}{5 \text { miles }}=\frac{10 \text { inches }}{x \text { miles }} \Rightarrow x=50$ miles
$\frac{1 \text { inch }}{5 \text { miles }}=\frac{7.2 \text { inches }}{y \text { miles }} \Rightarrow y=7.2 \times 5=36$ miles
The area of the state is 50×36, or $1,800 \mathrm{mi}^{2}$.
2. B

Let the number of students $=27 x$ and let the number of teachers $=2 x$. Then, there will be $27 x+2 x$, or $29 x$ students and teachers who are in the meeting. Now set up a proportion.
$\frac{\text { total in the meeting }}{\text { number of teachers }}=\frac{29 x}{2 x} \Rightarrow$
$\frac{754}{\text { number of teachers }}=\frac{29 \not x}{2 \not \swarrow} \Rightarrow$
number of teachers $=\frac{754 \times 2}{29}=52$
3. B

Let $5 x=$ the volume of cement, $9 x=$ the volume of sand, and $13 x=$ the volume of gravel. Thus the total volume of concrete is $5 x+9 x+13 x$, or
$27 x$, which is equal to $324 \mathrm{ft}^{3}$.
$27 x=324 \Rightarrow x=12$
Therefore, the amount of cement is $5 x=5 \cdot 12=60$.
4. 240

1 hour 45 minutes $=1 \frac{3}{4}$ hours
Set up a proportion.
$\frac{84 \text { miles }}{1 \frac{3}{4} \text { hours }}=\frac{x \text { miles }}{5 \text { hours }}$
$1 \frac{3}{4} x=84 \cdot 5 \quad$ Cross Products
$\frac{7}{4} x=420 \quad$ Simplify.
$\frac{4}{7} \cdot \frac{7}{4} x=\frac{4}{7} \cdot 420 \quad$ Multiply each side by $\frac{4}{7}$.
$x=240$
He can drive 240 miles in 5 hours.
5. 8

Let $2 x=$ the number of quarters, $4 x=$ the number of dimes, and $7 x=$ the number of nickels.
Then the total amount in terms of x,
$2 x(0.25)+4 x(0.1)+7 x(0.05)$, is equal to $\$ 5.00$.
$2 x(0.25)+4 x(0.1)+7 x(0.05)=5.00$
$0.5 x+0.4 x+0.35 x=5$
$1.25 x=5$
$x=4$
There are $2 x=2 \cdot 4$, or 8 quarters.
6. 6
$\frac{5 x}{3}=\frac{x+14}{2}$
$2(5 x)=3(x+14) \quad$ Cross Products
$10 x=3 x+42$
$7 x=42$
$x=6$
7. $\frac{5}{12}$

Let $r=$ the amount of raisin, $p=$ the amount of peanut, and $c=$ the amount of chocolate. Then
$\frac{r}{p}=\frac{2}{3} \quad$ The ratio of raisin to peanut is $2: 3$.
$3 r=2 p \quad$ Cross Products
$p=\frac{3}{2} r \quad$ Solve for p.
$\frac{p}{c}=\frac{5}{8} \quad$ The ratio of peanut to chocolate is $5: 8$.
$8 p=5 c \quad$ Cross Products
$p=\frac{5}{8} c \quad$ Solve for p.
Equate the two equations solved for p.
$\frac{3}{2} r=\frac{5}{8} c \Rightarrow \frac{2}{3} \cdot \frac{3}{2} r=\frac{2}{3} \cdot \frac{5}{8} c$
$\Rightarrow r=\frac{5}{12} c \Rightarrow \frac{r}{c}=\frac{5}{12}$

Section 6-3

1. A

Set up a proportion.
$\frac{20}{1240}=\frac{x}{1984} \underset{\text { number of machines }}{\leftarrow \text { number of printers }}$
$1240 x=20 \cdot 1984 \quad$ Cross Products
$x=\frac{20 \cdot 1984}{1240}=32$
Altogether we need 32 machines, therefore we need $32-20$, or 12 , more machines.

2 D
Let $x=$ the number of quarts of lemonade concentrate needed for 24 people.
In this question " $6 \frac{2}{3}$ quarts of water" was unnecessary information.
$\frac{\frac{3}{4}}{40}=\frac{x}{24} \frac{\leftarrow \text { quarts }}{\leftarrow \text { people }}$
$40 x=24 \cdot \frac{3}{4} \quad$ Cross products
$x=24 \cdot \frac{3}{4} \cdot \frac{1}{40}=\frac{9}{20}$
3. B

The number of tapes produced in one hour is
equal to $735 \div 5 \frac{1}{4}$, or 140 .
The fraction of 735 tapes produced in one hour
is $\frac{140}{735}$, or $\frac{4}{21}$.
4. B

Set up a proportion.
$\frac{32}{768}=\frac{x}{960} \underset{\text { number of acres }}{\leftarrow \text { number of bushels }}$
$768 x=32 \cdot 960 \quad$ Cross products
$x=\frac{32 \cdot 960}{768}=40$
Altogether we need 40 acres, therefore we need 40-32, or 8, more acres.
5. C

Let $x=$ the width of the rectangle, then $x+8=$ the length of the rectangle.
$P=2 \ell+2 w \quad$ Perimeter of a rectangle.
$P=2(x+8)+2(x) \quad \ell=x+8$, and $w=x$
$P=4 x+16 \quad$ Simplify.
$\frac{\text { length }}{\text { perimeter }}=\frac{x+8}{4 x+16}=\frac{5}{16}$
$16(x+8)=5(4 x+16) \quad$ Cross Products
$16 x+128=20 x+80$
$48=4 x$
$12=x$
The length of the rectangle is $12+8$, or 20 and the width of the rectangle is 12 .
The area of the rectangle is $20 \cdot 12$, or 240 .
6. D

If 12 grams of coffee cost x dollars, the cost of each gram of coffee is $\frac{x}{12}$ dollars. Let one cup of coffee cost d dollars, and set up a proportion to find the cost of one cup of coffee.
$\frac{\frac{x}{12}}{y}=\frac{d}{1} \frac{\leftarrow \text { cost in dollars }}{\leftarrow \text { number of cups }}$

$$
\begin{aligned}
& y \cdot d=\frac{x}{12} \\
& d=\frac{x}{12 y}
\end{aligned}
$$

Cross Products

Chapter 6 Practice Test

1. C
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}^{3}=(100 \mathrm{~cm})^{3}=1,000,000 \mathrm{~cm}^{3}$
$0.01 \mathrm{~m}^{3}=0.01 \times 1,000,000 \mathrm{~cm}^{3}=10,000 \mathrm{~cm}^{3}$
Density $=\frac{\text { Mass }}{\text { Volume }}$
4.54 grams $/ \mathrm{cm}^{3}=\frac{\text { Mass }}{0.01 \mathrm{~m}^{3}}=\frac{\text { Mass }}{10,000 \mathrm{~cm}^{3}}$

Mass $=4.54 \frac{\mathrm{grams}}{\mathrm{cm}^{3}} \cdot 10,000 \mathrm{~cm}^{3}$
$=45,400$ grams
2. A

Total time $=$ Jason's time + Donny's time

$$
\begin{aligned}
& =4 \text { hour } 25 \min +2 \text { hour } 15 \mathrm{~min} \\
& =4 \frac{5}{12} \text { hour }+2 \frac{1}{4} \text { hour }=6 \frac{2}{3} \text { hour }
\end{aligned}
$$

The amount Donny received
$=1,200 \times \frac{2 \frac{1}{4} \text { hour }}{6 \frac{2}{3} \text { hour }}=1,200 \cdot \frac{\frac{9}{4}}{\frac{20}{3}}=1,200 \cdot \frac{9}{4} \cdot \frac{3}{20}$ $=405$
3. C

If the ratio of white balls to yellow balls is $\frac{3}{10}$,
$3 n$ represents the number of white balls and $10 n$ represents the number of yellow balls (n is a positive integer).
Since the total number of balls in the bag is $3 n+10 n$, or $13 n$, and n is a positive integer, the number of balls will be a multiple of 13 .

Choice C is correct, because 42 is not a multiple of 13 .
4. C

Let $m=$ the number of miles traveled in y minutes. Substitute 60 minutes for 1 hour and set up a proportion.
$\frac{x}{60}=\frac{m}{y} \frac{\leftarrow \text { number of miles }}{\leftarrow \text { number of minutes }}$
$60 m=x y$
Cross Products
$m=\frac{x y}{60}$
5. B

Let $x=$ the number of years it will take the tree to reach a height of 30 feet.
Also, 8 inches $=\frac{8}{12}$ feet .
$8+\frac{8}{12} x=30$
The tree is 8 feet tall and will
$\frac{8}{12} x=22$
$x=22 \cdot \frac{12}{8}=33$
6. A
m minutes $=60 \mathrm{~m}$ seconds
Let $p=$ the number of pages he reads in $20 m$ seconds.
Set up a proportion.
$\frac{x}{60 m}=\frac{p}{20 m} \frac{\leftarrow \text { number of pages }}{\leftarrow \text { number of seconds }}$
$60 m \cdot p=20 m \cdot x \quad$ Cross Products
$p=\frac{20 m \cdot x}{60 m}=\frac{1}{3} x$
7. A
$\frac{x}{y}=1$
$y \cdot \frac{x}{y}=y \cdot 1 \quad$ Multiply each side by y.
$x=y \quad$ Simplify.
$x-y=y-y \quad$ Subtract y from each side.
$x-y=0 \quad$ Simplify.
$x-y-1=0-1 \quad$ Subtract 1 from each side.
$x-y-1=-1 \quad$ Simplify.
8. B

Let $m=$ the number of males in the room and let $f=$ the number of females in the room.
$\frac{m}{f}=\frac{4}{5} \quad$ The ratio of males to females is 4 to 5 .
$5 m=4 f \quad$ Cross Products
$\underline{m+8}=\frac{6}{5} \quad$ After 8 males enter the room, the $f \quad 5 \quad$ ratio of males to females is 6 to 5
$5(m+8)=6 f \quad$ Cross Products
$5 m+40=6 f \quad$ Simplify.
$4 f+40=6 f \quad$ Substitute $4 f$ for $5 m$.
$40=2 f \quad$ Subtract $2 f$ from each side.
$20=f \quad$ Divide each side by 2.
Substituting 20 for f in the equation $5 m=4 f$ gives $5 m=4 \cdot 20$. Solving for m yields $m=16$.

The total number of people in the room before the additional males enter the room is $m+f=16+20=36$.
9. B

If a person is born every 5 seconds, 12 people are born per minute. If a person dies every 12 seconds, 5 people die per minute. Every minute the population grows by $12-5$, or 7 , people.
Therefore, it takes $\frac{60}{7}$ seconds, or $8 \frac{4}{7}$ seconds, for the population to grow by one person.
10. D

Total area of the wall $=9 \times 12=108 \mathrm{ft}^{2}$.
Let it take p gallons of paint to paint $108 \mathrm{ft}^{2}$.
Set up a proportion.
$\frac{1}{s}=\frac{p}{108} \frac{\leftarrow \text { number of gallons }}{\leftarrow \text { number of square feet }}$
$s p=108 \quad$ Cross Products
$p=\frac{108}{s}$
It takes $\frac{108}{s}$ gallons of paint to paint $108 \mathrm{ft}^{2}$.
Since each gallon costs g dollars, the total cost will be $\frac{108}{s} \cdot g$ dollars.
11. $\frac{25}{4}$ or 6.25
$2 \mathrm{in}=5 \mathrm{~cm}$
1 in $=\frac{5}{2} \mathrm{~cm} \quad$ Divide each side by 2.
$(1 \mathrm{in})^{2}=\left(\frac{5}{2} \mathrm{~cm}\right)^{2} \quad$ Square both sides.
$1 \mathrm{in}^{2}=\frac{25}{4} \mathrm{~cm}^{2} \quad$ Simplify.
There are $\frac{25}{4}$ square centimeters in 1 square inch.
12.3

The reduced length of the painting is $18-x$ and the reduced width of the painting is $12-x$.

$$
\begin{array}{ll}
\frac{18-x}{12-x}=\frac{5}{3} & \text { The new ratio is } 5 \text { to } 3 . \\
3(18-x)=5(12-x) & \text { Cross Products } \\
54-3 x=60-5 x & \text { Distributive Property } \\
54+2 x=60 & \text { Add } 5 x \text { to each side. } \\
2 x=6 & \text { Subtract } 54 \text { from each side. } \\
x=3 & \text { Divide each side by } 2 .
\end{array}
$$

