Answer Key

Section 5-1

1. A
2. B
3. C
4. B
5. 1996
6. 80

Section 5-2

1. C
2. D
3. A
4. D
5. 400
6. 25

Section 5-3

1. B
2. A
3. B
4. D
5. C

Section 5-4

1. B
2. D
3. A
4. 104
5. 14

Chapter 5 Practice Test

1. D
2. C
3. B
4. A
5. A
6. C
7. D
8. B
9. A
10. B

Answers and Explanations

Section 5-1

1. A

Distance traveled
$=$ speed \times time $=\frac{60 \text { miles }}{1 \text { hour }} \times 5 \frac{1}{4}$ hours $=315$ miles
Number of gallons of gas used
$=\frac{1 \text { gallon }}{35 \text { miles }} \times 315$ miles $=9$ gallons
Since the tank of Chloe's car was filled with 12 gallons of gas at the beginning, $12-9$, or 3 gallons of gas are left in the tank.
2. B

Average rate of climbing per hour
$=\frac{\text { height gained }}{\text { time }}=\frac{210-90}{11-9.5}=\frac{120}{1.5}$
$=80$ feet $/$ hour
By 11:00 AM he has reached 210 feet up the cliff, so, the remaining height is $450-210$, or 240 feet. Since he is climbing up 80 feet per hour, it will take him $\frac{240}{80}$, or 3 more hours to reach the top of the cliff. Three hour later from 11:00 am is 2 pm .
3. C

Average rate of change in the price of the house
$=\frac{334,000-280,000}{2013-2005}=\frac{54,000}{8}$
$=6,750 /$ year
The purchase price of the house in the year 2018 will be $334,000+5 \times 6,750$, or $\$ 367,750$.
4. B

Since the first month is free for the club, the amount of monthly fee x months after a person joined the club will be $w \times(x-1)$, and the total amount including the one time membership fee will be $w \times(x-1)+d$.

Choice B is the correct.
5. 1996

Average rate of change in the population of city A
$=\frac{28,000-12,000}{2000-1990}=\frac{16,000}{10}$
$=1,600 /$ year
Average rate of change in the population of city B
$=\frac{24,000-18,000}{2000-1990}=\frac{6,000}{10}$
$=600 /$ year
Let $x=$ the number of years from 1990, and let $y=$ the population after 1990.
The population of city A after 1990 will be $y=1600 x+12,000$ and the population of city B after 1990 will be $y=600 x+18,000$.
To find the year the population of both cities were the same, let the two equations be equal.
$1600 x+12,000=600 x+18,000$
Solving the equation for x yields $x=6$.
The correct answer is 1996.
6. 80

Let $x=$ the time in minutes it takes for the amount of water in both tanks to become the same. During x minutes, $6 x$ gallons of water filled in the empty tank and $9 x$ gallons of water were drained from the 1,200 gallon tank. If the amount of water in the two tanks are the same, $6 x=1200-9 x$.

Solving the equation for x gives $x=80$.

Section 5-2

1. C

To find out the time it took for Jason to reach the finish line, solve the equation $-8 t+200=0$ for t. Solving the equation for t gives $t=25$.
Substitute 25 for t in the expression
$-7.5 t+200$.
$-7.5(25)+200=12.5$
Therefore, Mary has 12.5 meters left to finish when Jason is on the finish line.
2. D

First 6 bagels cost 55 cents each and the additional bagels cost c cents each. The total for 12 bagels is $\$ 5.70$. So, the other 6 bagels cost c cents each.
$6 \times 0.55+6 c=5.70$
$3.3+6 c=5.70$
$6 c=2.4$
$c=0.4$
The value of c is 40 cents.
3. A

Buying cost of candies $=0.7 c$
Number of candies sold $=c-k$
Selling price $=1.25(c-k)$
Profit $=$ selling price - buying cost

$$
=1.25(c-k)-0.7 c
$$

4. D

Let $x=$ David's monthly salary, then
$\frac{1}{10} x=$ grocery cost,
$\frac{9}{10} x=$ remaining salary,
$\frac{3}{18} \cdot \frac{9}{10} x=$ car payment,
$2 \cdot \frac{3}{18} \cdot \frac{9}{10} x=$ rent.
David's monthly salary x is equal to the sum of his grocery, car payment, rent, and \$1,620.
$x=\frac{1}{10} x+\frac{3}{18} \cdot \frac{9}{10} x+2 \cdot \frac{3}{18} \cdot \frac{9}{10} x+1620$
$x=\frac{99}{180} x+1440 \Rightarrow x-\frac{99}{180} x=1620$
$\Rightarrow x-\frac{99}{180} x=1440 \Rightarrow \frac{81}{180} x=1620$
$\Rightarrow x=1620 \cdot \frac{180}{81}=3600$
5. 400

Let $x=$ the number of votes the winner received, then $x-120=$ the number of votes the loser received. The sum of the votes both the winner and the loser received equals 680 .
$x+(x-120)=680$
$2 x-120=680$
$2 x=800$
$x=400$
6. 25

Let $x=$ the total capacity of the gas tank in liters.
Since $\frac{3}{8}$ of the gas tank is equivalent to 15 liters,
$\frac{3}{8} x=15$.
$\frac{3}{8} x=15 \Rightarrow x=15 \cdot \frac{8}{3}=40$
Since the gas tank is $\frac{3}{8}$ full, we need $\frac{5}{8} x$ more liters to fill up the gas tank.
$\frac{5}{8} x=\frac{5}{8}(40)=25$ liters

Section 5-3

1. B

Let $x=$ the amount Betty paid for the printer, then $2 x-18=$ the amount Adam paid for the printer. Total amount they paid together is $\$ 258$.

$$
\begin{aligned}
& \underbrace{(2 x-18)}_{\text {amount Adam paid }}+\underbrace{x}_{\text {amount Betty paid }}=258 \\
& \Rightarrow 3 x-18=258 \Rightarrow 3 x=276 \Rightarrow x=92
\end{aligned}
$$

The amount Adam paid
$=2 x-18=2(92)-18=166$
2. A

Let $x=$ the number of two-seat tables, then $28-x=$ the number of four-seat tables. When all the tables are full, there will be 90 customers in the restaurant. Therefore,

$$
\begin{aligned}
& 2 x+4(28-x)=90 \\
& \Rightarrow 2 x+112-4 x=90 \Rightarrow-2 x+112=90 \\
& \Rightarrow-2 x=-22 \Rightarrow x=11
\end{aligned}
$$

There are 11 two-seat tables.

3. B

Let $x=$ the number of 3 -point field goals, then $x+73=$ the number of 2-point field goals. He scored a total of 216 goals in the tournament.

$$
\underbrace{3 x}_{\begin{array}{l}
\text { number of points made } \\
\text { through 3-point field goal }
\end{array}}+\underbrace{2(x+73)}_{\begin{array}{l}
\text { number of points made } \\
\text { through 2-point field goal }
\end{array}}=\underbrace{216}_{\begin{array}{c}
\text { total number } \\
\text { of points }
\end{array}}
$$

$3 x+2(x+73)=216 \Rightarrow 3 x+2 x+146=216$
$\Rightarrow 5 x+146=216 \Rightarrow 5 x=70 \Rightarrow x=14$
4. D

Let $x=$ the original number of sedans.
Then $x-36=$ the number of sedans left after 36 of them are sold and $x+8=$ the number of sedans after 8 are added.
Let $y=$ the original number of SUVs.
Then $y+36=$ the number of SUVs after 36 of them are added and $y-8=$ the number of SUVs after 8 of them are sold.

If 36 sedans are sold and 36 SUV are added then there will be an equal number of sedans and SUVs, and if 8 SUV are sold and 8 sedans are added then there will be twice as many sedans as SUVs. The equations that represent these relationships are $x-36=y+36$ and $x+8=2(y-8)$.

Solving the first equation for y gives $y=x-72$. Substituting $x-72$ for y in the second equation yields $x+8=2(x-72-8)$.
$x+8=2(x-72-8) \Rightarrow x+8=2(x-80)$
$\Rightarrow x+8=2 x-160 \Rightarrow 168=x$
Choice D is correct.
5. C

The sale price of coffee, s, is $\$ 5.25$ less than the regular price, r. The equation that represents this relationship is $s=r-5.25$.
The cost of 4 bags of coffee at regular price is the same as the cost of 6 bags of coffee at sale price. The equation that represents this relationship is $4 r=6 s$.

Choice C is correct.

Section 5-4

1. B

The truck rental cost $\$ 49$ a day, so for two days it will cost $2 \times \$ 49$, or $\$ 98$. In addition, it cost
$\$ 0.40$ per mile. If Tom drives m miles the total cost will be $98+0.4 m$ dollars. This cost will not be more than $\$ 300$ if $98+0.4 m \leq 300$.

$$
\begin{aligned}
& 98+0.4 m \leq 300 \Rightarrow 0.4 m \leq 202 \\
& \Rightarrow m \leq \frac{202}{0.4} \Rightarrow m \leq 505
\end{aligned}
$$

2. D

Let $p=$ the number of paperback copies and let $h=$ the number of hard cover copies.

$$
\begin{array}{ll}
p+h=140 & \begin{array}{l}
\text { There are } 140 \text { paperback and hard } \\
\text { cover copies. }
\end{array} \\
h \leq \frac{1}{6} p & \begin{array}{l}
\text { Hard cover copies do not exceed one } \\
\text { sixth the number of paperback copies }
\end{array}
\end{array}
$$

Solving the equation for h gives $h=140-p$.
Substitute $140-p$ for h in the inequality.

$$
\begin{aligned}
& 140-p \leq \frac{1}{6} p \Rightarrow 140-p+p \leq \frac{1}{6} p+p \\
& \Rightarrow 140 \leq \frac{7}{6} p \Rightarrow \frac{6}{7} \cdot 140 \leq \frac{6}{7} \cdot \frac{7}{6} p \\
& \Rightarrow 120 \leq p
\end{aligned}
$$

Therefore, the minimum number of paperback copies in Tim's book shelf is 120 .
3. A

Let $g=$ the number of students in geometry class and let $s=$ the number of students in Spanish class.
$g=\frac{4}{5} s$
The number of students in a geometry class is four fifths the number of students in a Spanish class.
$g+s \leq 54 \quad$ The total number of students in both classes does not exceed 54 .

Substitute $\frac{4}{5} s$ for g into the inequality.
$\frac{4}{5} s+s \leq 54 \Rightarrow \frac{9}{5} s \leq 54$
$\Rightarrow \frac{5}{9} \cdot \frac{9}{5} s \leq \frac{5}{9} \cdot 54$
$\Rightarrow \quad s \leq 30$
Therefore, the greatest possible number of students in the Spanish class is 30 .
4. 104

Let $s=$ the price of shoes and
let $p=$ the price of pants.
$s+p=172 \quad$ Jay paid $\$ 172$ for a pair of shoes and a pair of pants.
$p<\frac{2}{3} s \quad$ The pants cost less than two thirds
Solving the equation for p gives $p=172-s$.
Substitute $172-s$ for p in the inequality.

$$
\begin{aligned}
& 172-s<\frac{2}{3} s \Rightarrow 172-s+s<\frac{2}{3} s+s \\
& \Rightarrow 172<\frac{5}{3} s \Rightarrow \frac{3}{5} \cdot 172<\frac{3}{5} \cdot \frac{5}{3} s \\
& \Rightarrow 103.2<s
\end{aligned}
$$

Therefore, the minimum price of the shoes to the nearest dollar is $\$ 104$.
5. 14

Let $e=$ the number of hours Ty needs to work on weekends, then $36-e=$ the number of hours Ty works on weekdays.
Ty earns \$14 an hour working on weekdays and $\$ 21$ an hour working on weekends and he wants to make at least $\$ 600$. The inequality that represents this relationship is $14(36-e)+21 e \geq 600$.

$$
\begin{aligned}
& 14(36-e)+21 e \geq 600 \Rightarrow 504-14 e+21 e \geq 600 \\
& \Rightarrow 504+7 e \geq 600 \Rightarrow 7 e \geq 96 \\
& \Rightarrow e \geq \frac{96}{7}(\approx 13.7)
\end{aligned}
$$

Therefore, he needs to work at least 14 hours on the weekends.

Chapter 5 Practice Test

1. D

If the apartment manager hires an electrician from company A, he needs to pay 55 dollars per hour. So for x hours, he has to pay $55 x$ dollars plus 40 dollars for a service call. Therefore, the total cost, y, of repairing the power generator will be $y=55 x+40$.
2. C

The total cost, y, of repairing the generator for company B will be $y=48 x+75$. If the cost of repairing the generator for company B is less than or equal to the total cost of repairing the generator for company A, then $48 x+75 \leq 55 x+40$.

$$
\begin{aligned}
& 48 x+75 \leq 55 x+40 \\
& \Rightarrow 48 x+75-48 x \leq 55 x+40-48 x \\
& \Rightarrow 75 \leq 7 x+40 \Rightarrow 75-40 \leq 7 x+40-40 \\
& \Rightarrow 35 \leq 7 x \Rightarrow 5 \leq x
\end{aligned}
$$

Choice C is correct.
3. B

The total cost, y, for a service call and hourly charge from company B is given by the equation $y=48 x+75$. If the relationship is graphed on the $x y$-plane, the slope of the graph is 48 , which is the hourly rate for company B .
Choice B is correct.
4. A

If a car is rented for three days and driven for x miles, the rental charges of Apex Car Rental will be $3 \times 40+0.75 x$ and the rental charges of Jason Car Rental will be $3 \times 64+0.6 x$.
The two company's charges will be the same if

$$
\begin{aligned}
& 3 \times 40+0.75 x=3 \times 64+0.6 x \\
& 120+0.75 x=192+0.6 x \\
& 120+0.75 x-0.6 x=192+0.6 x-0.6 x \\
& 120+0.15 x=192 \\
& 120+0.15 x-120=192-120 \\
& 0.15 x=72 \\
& x=480
\end{aligned}
$$

5. A

Let $d=$ the distance in miles from Sara's home to the park. Since average time $=\frac{\text { total distance }}{\text { average speed }}$, the time it took to jog from home to the park $=\frac{d}{8}$ and the time it took to jog from the park to her home $=\frac{d}{6}$. Since the total time for the round trip was 42 minute, or $\frac{42}{60}$ hours, $\frac{d}{8}+\frac{d}{6}=\frac{42}{60}$.

By multiplying each side of the equation by 120 , we have $120\left(\frac{d}{8}+\frac{d}{6}\right)=120\left(\frac{42}{60}\right)$.
$\Rightarrow 15 d+20 d=84 \Rightarrow 35 d=84$
$\Rightarrow d=\frac{84}{35}=2.4$
6. C

The time it took for Carl to drive to the beach plus the time spent for the return trip equals 2 hours.
Therefore $x+y=2$.
Also the distance of going to the beach equals the returning distance. Use the formula $d=r t$.

The distance to the beach equals to $50 x$ and the returning distance equals $30 y$. Thus $50 x=30 y$. Choice C is correct.
7. D

Let $x=$ number of months at which both gyms cost the same.
The total cost x months after joining Ace Gym is $180+35 x$ and the total cost x months after joining Best Gym is $300+23 x$. If $180+35 x=300+23 x$ the total cost of either gym will be the same.

$$
\begin{aligned}
& 180+35 x-23 x=300+23 x-23 x \\
& 180+12 x=300 \\
& 180+12 x-180=300-180 \\
& 12 x=120 \\
& x=10
\end{aligned}
$$

8. B

If you pay for admission and take r rides, the total cost will be $\$(8+1.25 r)$.
The total cost does not exceed $\$ 20$
if $8+1.25 r \leq 20$.
$8+1.25 r \leq 20 \Rightarrow 8+1.25 r-8 \leq 20-8$
$\Rightarrow 1.25 r \leq 12 \Rightarrow r \leq \frac{12}{1.25} \Rightarrow r \leq 9.6$
Therefore, the maximum number of rides you can go on is 9 .
9. A

The number of gallons of gas needed to drive $6 x$ miles in the city $=\frac{6 x}{18}=\frac{1}{3} x$.
The number of gallons of gas needed to drive $18 x$ miles on the highway $=\frac{18 x}{27}=\frac{2}{3} x$.
Total number of gallons of gas needed equals $\frac{1}{3} x+\frac{2}{3} x$, or x.
10. B

If x represents the number of 6-bottle packages and y represents the number of 8 -bottle packages, then $x+y$ represents the total number of packages. Thus, $x+y=270$.
If x is the number of 6-bottle packages, then there are $6 x$ water bottles and if y is the number of 8 -bottle packages, then there are $8 y$ water bottles.
Thus, $6 x+8 y=1860$.
Choice B is correct.

