15-1. Trigonometric Ratios of Acute Angles

A ratio of the lengths of sides of a right triangle is called a **trigonometric ratio**. The six trigonometric ratios are **sine**, **cosine**, **tangent**, **cosecant**, **secant**, and **cotangent**.

Their abbreviations are sin, cos, tan, csc, sec, and cot, respectively. The six trigonometric ratios of any angle $0^{\circ} < \theta < 90^{\circ}$, sine, cosine, tangent, cosecant, secant, and cotangent, are defined as follows.

The sine and cosine are called **cofunctions**. In a right triangle *ABC*, $\angle A$ and $\angle B$ are complementary, that is, $m \angle A + m \angle B = 90$. Thus any trigonometric function of an acute angle is equal to the cofunction of the complement of the angle.

Complementary Angle Theorem

 $\sin \theta = \cos(90^\circ - \theta) \qquad \cos \theta = \sin(90^\circ - \theta)$ If $\sin \angle A = \cos \angle B$, then $m \angle A + m \angle B = 90^\circ$.

Trigonometric Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta = 1$$

Example 1 \Box In the right triangle shown at the right, find $\cos \theta$ and $\tan \theta$ if $\sin \theta = \frac{2}{3}$.

Solution

$$\begin{aligned}
\sin^2 \theta + \cos^2 \theta &= 1 \\
(\frac{2}{3})^2 + \cos^2 \theta &= 1 \\
\cos^2 \theta &= 1 - (\frac{2}{3})^2 &= 1 - \frac{4}{9} &= \frac{5}{9} \\
\cos \theta &= \sqrt{\frac{5}{9}} &= \frac{\sqrt{5}}{\sqrt{9}} &= \frac{\sqrt{5}}{3} \\
\tan \theta &= \frac{\sin \theta}{\cos \theta} &= \frac{2/3}{\sqrt{5}/3} &= \frac{2}{\sqrt{5}} &= \frac{2\sqrt{5}}{5}
\end{aligned}$$
Trigonometric identity
Substitute $\frac{2}{3}$ for $\sin \theta$.

Example 2 \Box In a right triangle, θ is an acute angle. If $\sin \theta = \frac{4}{9}$, what is $\cos(90^\circ - \theta)$?

Solution \Box By the complementary angle property of sine and cosine, $\cos(90^\circ - \theta) = \sin \theta = \frac{4}{9}$.

Exercises - Trigonometric Ratios of Acute Angles

15-2. The Radian Measure of an Angle

One **radian** is the measure of a central angle θ whose intercepted arc has a length equal to the circle's radius. In the figure at the right, if length of the arc AB = OA,

then $m \angle AOB = 1$ radian.

Since the circumference of the circle is $2\pi r$ and

a complete revolution has degree measure 360°,

 2π radians = 360°, or π radians = 180°.

The conversion formula π radians = 180° can be used to convert radians to degrees and vice versa.

1 radian =
$$\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$$
 and $1^{\circ} = \frac{\pi}{180}$ radians

The measure of a central angle θ is 1 radian, if the length of the arc *AB* is equal to the radius of the circle.

On a coordinate plane, an angle may be drawn by two rays that share a fixed endpoint at the origin. The beginning ray, called the **initial side** of the angle and the final position, is called the **terminal side** of the angle. An angle is in **standard position** if the vertex is located at the origin and the initial side lies along the positive x-axis. Counterclockwise rotations produce **positive angles** and clockwise rotations produce **negative angles**. When two angles have the same initial side and the same terminal side, they are called **coterminal angles**.

You can find an angle that is coterminal to a given angle by adding or subtracting integer multiples of 360° or 2π radians. In fact, the sine and cosine functions repeat their values every 360° or 2π radians, and tangent functions repeat their values every 180° or π radians.

Periodic Properties of the Trigonometric Functions

$$\sin(\theta \pm 360^\circ) = \sin \theta$$
 $\cos(\theta \pm 360^\circ) = \cos \theta$ $\tan(\theta \pm 180^\circ) = \tan \theta$

a.
$$45^{\circ}$$
 b. $\frac{2\pi}{3}$ radians

Solution a. $45^{\circ} = 45 \cdot \frac{\pi}{180}$ radians $= \frac{\pi}{4}$ radians b. $\frac{2\pi}{3}$ radians $= \frac{2\pi}{3}$ radians $(\frac{180^{\circ}}{\pi \text{ radians}}) = 120^{\circ}$

In the *xy*-plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians. What is the value of *k*?

3

In the *xy*-plane above, *O* is the center of the circle and the measure of $\angle AOD$ is $\frac{\pi}{3}$. If the radius of circle *O* is 6 what is the length of *AD*?

A) 3 B) $3\sqrt{2}$ C) 4.5 D) $3\sqrt{3}$

4

2

Which of the following is equal to $\cos(\frac{\pi}{8})$?

A)
$$\cos(\frac{3\pi}{8})$$

B) $\cos(\frac{7\pi}{8})$
C) $\sin(\frac{3\pi}{8})$
D) $\sin(\frac{7\pi}{8})$

In the figure above, what is the value of $\cos \angle AOD$?

0

∎ y

A(3,4)

D

 $B \rightarrow x$

A)
$$\frac{3}{5}$$

B) $\frac{3}{4}$
C) $\frac{4}{5}$
D) $\frac{4}{3}$

Exercises - The Radian Measure of an Angle

15-3. Trigonometric Functions and the Unit Circle

Suppose P(x, y) is a point on the circle $x^2 + y^2 = r^2$ and θ is an angle in standard position with terminal side *OP*, as shown at the right. We define sine of θ and cosine of θ as

$$\sin\theta = \frac{y}{r} \qquad \qquad \cos\theta = \frac{x}{r}$$

The circle $x^2 + y^2 = 1$ is called the **unit circle**. This circle is the easiest one to work with because $\sin \theta$ and $\cos \theta$ are simply the *y*-coordinates and the *x*-coordinates of the points where the terminal side of θ intersects the circle.

$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y \qquad \qquad \cos \theta = \frac{x}{r} = \frac{x}{1} = x \; .$$

Angles in standard position whose measures are multiples of $30^{\circ}(\frac{\pi}{6} \text{ radians})$ or multiples of $45^{\circ}(\frac{\pi}{4} \text{ radians})$ are called **familiar angles**. To obtain the trigonometric values of sine, cosine,

and tangent of the familiar angles, use $30^{\circ}-60^{\circ}-90^{\circ}$ triangle ratio or the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle ratio.

The **reference angle** associated with θ is the acute angle formed by the *x*-axis and the terminal side of the angle θ . A reference angle can be used to evaluate trigonometric functions for angles greater than 90°.

Familiar Angles in a Coordinate Plane

Angles with a reference angle of $30^{\circ}(=\frac{\pi}{6})$ are $150^{\circ}(=\frac{5\pi}{6})$, $210^{\circ}(=\frac{7\pi}{6})$, and $330^{\circ}(=\frac{11\pi}{6})$.

Use the 30°-60°-90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

Angles with a reference angle of $60^{\circ}(=\frac{\pi}{3})$ are $120^{\circ}(=\frac{2\pi}{3})$, $240^{\circ}(=\frac{4\pi}{3})$, and $300^{\circ}(=\frac{5\pi}{3})$.

Use the 30°-60°-90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

Angles with a reference angle of
$$45^{\circ}(=\frac{\pi}{4})$$
 are $135^{\circ}(=\frac{3\pi}{4})$, $225^{\circ}(=\frac{5\pi}{4})$, and $315^{\circ}(=\frac{7\pi}{4})^{\circ}$

Use the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

For the angles 0° , $90^{\circ} = \frac{\pi}{2}$, $180^{\circ} = \pi$, and $270^{\circ} = \frac{3\pi}{2}$, $\sin \theta$ is equal to the *y* value of the point P(x, y) and $\cos \theta$ is equal to the *x* value of the point P(x, y). The points P(1, 0), P(0, 1), P(-1, 0), and P(0, -1) on the unit circle corresponds to $\theta = 0^{\circ} = 0$, $\theta = 90^{\circ} = \frac{\pi}{2}$, $\theta = 180^{\circ} = \pi$, and $\theta = 270^{\circ} = \frac{3\pi}{2}$ respectively.

Chapter 15 Practice Test

C) 1

D)
$$\frac{s}{\sqrt{2}}$$

Questions 1 and 2 refer to the following information.

In the *xy*-plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians.

What is the value of *k*?

- A) $\frac{1}{3}$ B) $\frac{1}{2}$
- C) $\frac{2}{3}$
- D) $\frac{3}{4}$

4

What is $\cos(k+1)\pi$?

In triangle *ABC* above, $\overline{AC} \perp \overline{BD}$. Which of the following does not represent the area of triangle *ABC*?

A) $\frac{1}{2}(AB \cos \angle A + BC \cos \angle C)(AB \cos \angle ABD)$ B) $\frac{1}{2}(AB \cos \angle A + BC \cos \angle C)(BC \sin \angle C)$ C) $\frac{1}{2}(AB \sin \angle ABD + BC \sin \angle CBD)(AB \sin \angle A)$ D) $\frac{1}{2}(AB \sin \angle ABD + BC \sin \angle CBD)(BC \cos \angle C)$

In the isosceles triangle above, what is the value of $\sin x^\circ$?

7

In triangle *ABC*, the measure of $\angle C$ is 90°, *AC* = 24, and *BC* = 10. What is the value of sin *A*?

In the right triangle *ABC* above, the cosine of x° is $\frac{3}{5}$. If *BC* = 12, what is the length of *AC*?

9

If $\sin(5x-10)^\circ = \cos(3x+16)^\circ$, what is the value of x?

Answer Key

Section 15-1 1. B 2. C 3. B 4. D 5. C Section 15-2 1. B 2. C 3. D 4. A Section 15-3 2. C 1. A 3. B 4. D Chapter 15 Practice Test 1. D 2. C 3.C 4. B 5. D 7. $\frac{5}{13}$ 6. D 8.9 9.10.5

Answers and Explanations

Section 15-1

1. B

Draw a perpendicular segment from B to the opposite side AC. Let the perpendicular segment intersect side AC at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6$$
.
In right $\triangle ABD$,
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$.

2. C

$$AB^{2} = BD^{2} + AD^{2}$$
 Pythagorean Theorem

$$10^{2} = BD^{2} + 6^{2}$$

$$100 = BD^{2} + 36$$

$$64 = BD^{2}$$

$$8 = BD$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.8$$

3. B

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$

4.D

If x and y are acute angles and $\cos x^{\circ} = \sin y^{\circ}$, x + y = 90 by the complementary angle theorem.

(3a-14) + (50-a) = 90 x = 3a-14, y = 50-a 2a + 36 = 90 Simplify. 2a = 54a = 27

5. C

I.
$$\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral I is true.

II.
$$\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral II is true.

III.
$$\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}$$

Roman numeral III is false.

Section 15-2

1. B

The graph shows P(x, y) = P(1, 1). Thus, x = 1and y = 1. Use the distance formula to find the length of radius *OA*.

$$OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

sin $\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \text{ or } \sin \theta = \frac{\sqrt{2}}{2}$

Therefore, the measure of $\angle POQ$ is 45° , which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians. Thus, $k = \frac{1}{4}$.

2. C

Use the complementary angle theorem. $\cos(\theta) = \sin(90^\circ - \theta)$, or $\cos(\theta) = \sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8})$. All the other answer choices have values different from $\cos(\frac{\pi}{8})$.

3. D

In
$$\triangle OAD$$
, $\sin\frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$.
Since $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$.
Therefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A

Use the distance formula to find the length of *OA*. $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$

$$\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}$$

Section 15-3

1. A

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, x = -1

and $y = \sqrt{3}$. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (\sqrt{3})^2 + (-1)^2 = 4$

 $OP = PR + OR = (\sqrt{3}) + (-1) =$ Which gives OP = 2.

2. C

Since the terminal side of $(a+180)^{\circ}$ is OT, the value of $\cos(a+180)^{\circ}$ is equal to $\frac{OS}{OT}$. $\frac{OS}{OT} = \frac{1}{2}$

3. B

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, $x = -\sqrt{3}$ and y = -1. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (-1)^2 + (\sqrt{3})^2 = 4$ Which gives OP = 2.

Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian.

$$k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$$

Therefore, $k = \frac{7}{6}$

4. D

$$\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{-\sqrt{3}}$$

Chapter 15 practice Test

1. D

 $\frac{1}{\sqrt{3}}$

In
$$\triangle ABC$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$.
If $\tan \theta = \frac{3}{4}$, then $BC = 3$ and $AC = 4$.
By the Pythagorean theorem,
 $AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$, thus
 $AB = \sqrt{25} = 5$.

2. C

 $\sin\theta = \frac{BC}{AB} = \frac{3}{5}$

3. C

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (\frac{\sqrt{3}}{2})^2 + (\frac{-1}{2})^2 = \frac{3}{4} + \frac{1}{4} = 1$ Which gives OP = 1. Thus, triangle *OPR* is $30^\circ - 60^\circ - 90^\circ$ triangle and the measure of $\angle POR$ is 60° , which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then *k* is equal to $\frac{2}{3}$.

4. B

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$. $\frac{OS}{OT} = \frac{1}{2}$

5. D

Area of triangle $ABC = \frac{1}{2}(AC)(BD)$ Check each answer choice.

A) $\frac{1}{2}(AB\cos \angle A + BC\cos \angle C)(AB\cos \angle ABD)$ $\frac{1}{2}(AD\cos \angle ABD)$

$$= \frac{1}{2} \left(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC} \right) \left(AB \cdot \frac{BD}{AB} \right)$$
$$= \frac{1}{2} \left(AD + CD \right) \left(BD \right) = \frac{1}{2} \left(AC \right) \left(BD \right)$$

B)
$$\frac{1}{2}(AB\cos \angle A + BC\cos \angle C)(BC\sin \angle C)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(BC \cdot \frac{BD}{BC})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

C)
$$\frac{1}{2}(AB\sin \angle ABD + BC\sin \angle CBD)(AB\sin \angle A)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$
D)
$$\frac{1}{2}(AB\sin \angle ABD + BC\sin \angle CBD)(BC\cos \angle C)$$

$$2^{2}$$

$$= \frac{1}{2} (AB \cdot \frac{AD}{AB} + BC \frac{CD}{BC})(BC \cdot \frac{CD}{BC})$$

$$= \frac{1}{2} (AD + CD)(CD) = \frac{1}{2} (AC)(CD)$$
Which does not represent the area of

triangle *ABC*.

Choice D is correct.

6. D

Draw segment *BD*, which is perpendicular to side *AC*. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12$$
.
By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$
Thus, $20^2 = BD^2 + 12^2$.
 $BD^2 = 20^2 - 12^2 = 256$
 $BD = \sqrt{256} = 16$
In right $\triangle ABD$,
 $\sin x^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$.

7.
$$\frac{5}{13}$$

Sketch triangle ABC.

 $AB^{2} = BC^{2} + AC^{2}$ $AB^{2} = 10^{2} + 24^{2} = 676$ $AB = \sqrt{676} = 26$ $\sin A = \frac{10}{26} = \frac{5}{13}$

8. 9

$$\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}$$
Let $AC = 3x$ and $AB = 5x$.
 $AB^2 = BC^2 + AC^2$ Pythagorean Theorem
 $(5x)^2 = 12^2 + (3x)^2$ $BC = 12$
 $25x^2 = 144 + 9x^2$
 $16x^2 = 144$
 $x^2 = 9$
 $x = \sqrt{9} = 3$
Therefore, $AC = 3x = 3(3) = 9$

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If
$$\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$$
,
 $3x+16 = 90 - (5x-10)$.
 $3x+16 = 90 - 5x + 10$
 $3x+16 = 100 - 5x$
 $8x = 84$
 $x = 10.5$