Answer Key

Section 15-1

1. B
2. C
3. B
4. D
5. C

Section 15-2

1. B
2. C
3. D
4. A

Section 15-3

1. A
2. C
3. B
4. D

Chapter 15 Practice Test

1. D
2. C
3.C
3. B
4. D
5. D
6. $\frac{5}{13}$
7. 9
8. 10.5

Answers and Explanations

Section 15-1

1. B

Draw a perpendicular segment from B to the opposite side $A C$. Let the perpendicular segment intersect side $A C$ at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.
Therefore, $A D=\frac{1}{2} A C=\frac{1}{2}(12)=6$.
In right $\triangle A B D$,
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A D}{A B}=\frac{6}{10}=0.6$.
2. C

$$
\begin{aligned}
& A B^{2}=B D^{2}+A D^{2} \quad \text { Pythagorean Theorem } \\
& 10^{2}=B D^{2}+6^{2} \\
& 100=B D^{2}+36 \\
& 64=B D^{2} \\
& 8=B D \\
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{B D}{A B}=\frac{8}{10}=0.8
\end{aligned}
$$

3. B
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{B D}{A D}=\frac{8}{6}=\frac{4}{3}$
4. D

If x and y are acute angles and $\cos x^{\circ}=\sin y^{\circ}$, $x+y=90$ by the complementary angle theorem.

$$
\begin{array}{ll}
(3 a-14)+(50-a)=90 & x=3 a-14, y=50-a \\
2 a+36=90 & \text { Simplify } . \\
2 a=54 & \\
a=27 &
\end{array}
$$

5. C

I. $\sin A=\frac{\text { opposite of } \angle A}{\text { hypotenuse }}=\frac{a}{c}$

Roman numeral I is true.
II. $\cos B=\frac{\text { adjacent of } \angle B}{\text { hypotenuse }}=\frac{a}{c}$

Roman numeral II is true.
III. $\tan A=\frac{\text { opposite of } \angle A}{\text { adjacent of } \angle A}=\frac{a}{b}$

Roman numeral III is false.

Section 15-2

1. B

The graph shows $P(x, y)=P(1,1)$. Thus, $x=1$ and $y=1$. Use the distance formula to find the length of radius $O A$.
$O A=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{1}{\sqrt{2}}$ or $\sin \theta=\frac{\sqrt{2}}{2}$

Therefore, the measure of $\angle P O Q$ is 45°, which is equal to $45\left(\frac{\pi}{180}\right)=\frac{\pi}{4}$ radians.

Thus, $k=\frac{1}{4}$.
2. C

Use the complementary angle theorem. $\cos (\theta)=\sin \left(90^{\circ}-\theta\right)$, or $\cos (\theta)=\sin \left(\frac{\pi}{2}-\theta\right)$
Therefore, $\cos \left(\frac{\pi}{8}\right)=\sin \left(\frac{\pi}{2}-\frac{\pi}{8}\right)=\sin \left(\frac{3 \pi}{8}\right)$.
All the other answer choices have values different from $\cos \left(\frac{\pi}{8}\right)$.
3. D

In $\triangle O A D, \sin \frac{\pi}{3}=\sin 60^{\circ}=\frac{A D}{O A}=\frac{A D}{6}$.
Since $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, you get $\frac{A D}{6}=\frac{\sqrt{3}}{2}$.
Therefore, $2 A D=6 \sqrt{3}$ and $A D=3 \sqrt{3}$.
4. A

Use the distance formula to find the length of $O A$.
$O A=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$
$\cos \angle A O D=\frac{O D}{O A}=\frac{3}{5}$

Section 15-3

1. A

Draw segment $P R$, which is perpendicular to the x-axis. In right triangle $P O R, x=-1$
and $y=\sqrt{3}$. To find the length of $O P$, use the Pythagorean theorem.
$O P^{2}=P R^{2}+O R^{2}=(\sqrt{3})^{2}+(-1)^{2}=4$
Which gives $O P=2$.
$\cos a^{\circ}=\frac{x}{O P}=\frac{-1}{2}$

2. C

Since the terminal side of $(a+180)^{\circ}$ is $O T$, the value of $\cos (a+180)^{\circ}$ is equal to $\frac{O S}{O T}$.
$\frac{O S}{O T}=\frac{1}{2}$
3. B

Draw segment $P R$, which is perpendicular to the x-axis. In right triangle $P O R, x=-\sqrt{3}$ and $y=-1$. To find the length of $O P$, use the Pythagorean theorem.
$O P^{2}=P R^{2}+O R^{2}=(-1)^{2}+(\sqrt{3})^{2}=4$
Which gives $O P=2$.
Since $\sin \angle P O R=\frac{y}{O P}=\frac{-1}{2}$, the measure of $\angle P O R$ is equal to 30°, or $\frac{\pi}{6}$ radian.
$k \pi=\pi+\frac{\pi}{6}=\frac{7}{6} \pi$
Therefore, $k=\frac{7}{6}$
4. D

$$
\tan (k \pi)=\tan \left(\frac{7}{6} \pi\right)=\frac{y}{x}=\frac{-1}{-\sqrt{3}}=\frac{1}{\sqrt{3}}
$$

Chapter 15 practice Test

1. D

Note: Figure not drawn to scale.
In $\triangle A B C, \tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{B C}{A C}$.
If $\tan \theta=\frac{3}{4}$, then $B C=3$ and $A C=4$.
By the Pythagorean theorem,

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2}=4^{2}+3^{2}=25, \text { thus } \\
& A B=\sqrt{25}=5 \\
& \sin \theta=\frac{B C}{A B}=\frac{3}{5}
\end{aligned}
$$

2. C

$\tan \angle A=\frac{\text { opposite side of } \angle A}{\text { adjacent side of } \angle A}=\frac{s}{S}=1$

$$
=\frac{s}{s}=1
$$

3. C

Draw segment $P R$, which is perpendicular to the x-axis. In right triangle $P O R, x=-\frac{1}{2}$ and $y=\frac{\sqrt{3}}{2}$. To find the length of $O P$, use the Pythagorean theorem.
$O P^{2}=P R^{2}+O R^{2}=\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}=\frac{3}{4}+\frac{1}{4}=1$
Which gives $O P=1$. Thus, triangle $O P R$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and the measure of $\angle P O R$ is 60°, which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle P O Q$ is $\pi-\frac{\pi}{3}$, or $\frac{2 \pi}{3}$ radian. If $\angle P O Q$ is $k \pi$ radians then k is equal to $\frac{2}{3}$.
4. B

Since the terminal side of $(k+1) \pi$ is $O T$, the value of $\cos (k+1) \pi$ is equal to $\frac{O S}{O T}$.
$\frac{O S}{O T}=\frac{1}{2}$
5. D

Area of triangle $A B C=\frac{1}{2}(A C)(B D)$
Check each answer choice.
A) $\frac{1}{2}(A B \cos \angle A+B C \cos \angle C)(A B \cos \angle A B D)$

$$
\begin{aligned}
& =\frac{1}{2}\left(A B \cdot \frac{A D}{A B}+B C \cdot \frac{C D}{B C}\right)\left(A B \cdot \frac{B D}{A B}\right) \\
& =\frac{1}{2}(A D+C D)(B D)=\frac{1}{2}(A C)(B D)
\end{aligned}
$$

B) $\frac{1}{2}(A B \cos \angle A+B C \cos \angle C)(B C \sin \angle C)$

$$
\begin{aligned}
& =\frac{1}{2}\left(A B \cdot \frac{A D}{A B}+B C \cdot \frac{C D}{B C}\right)\left(B C \cdot \frac{B D}{B C}\right) \\
& =\frac{1}{2}(A D+C D)(B D)=\frac{1}{2}(A C)(B D)
\end{aligned}
$$

C) $\frac{1}{2}(A B \sin \angle A B D+B C \sin \angle C B D)(A B \sin \angle A)$

$$
\begin{aligned}
& =\frac{1}{2}\left(A B \cdot \frac{A D}{A B}+B C \cdot \frac{C D}{B C}\right)\left(A B \cdot \frac{B D}{A B}\right) \\
& =\frac{1}{2}(A D+C D)(B D)=\frac{1}{2}(A C)(B D)
\end{aligned}
$$

D) $\frac{1}{2}(A B \sin \angle A B D+B C \sin \angle C B D)(B C \cos \angle C)$

$$
\begin{aligned}
& =\frac{1}{2}\left(A B \cdot \frac{A D}{A B}+B C \frac{C D}{B C}\right)\left(B C \cdot \frac{C D}{B C}\right) \\
& =\frac{1}{2}(A D+C D)(C D)=\frac{1}{2}(A C)(C D)
\end{aligned}
$$

Which does not represent the area of triangle $A B C$.
Choice D is correct.
6. D

Draw segment $B D$, which is perpendicular to side $A C$. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.
Therefore, $A D=\frac{1}{2} A C=\frac{1}{2}(24)=12$.
By the Pythagorean theorem, $A B^{2}=B D^{2}+A D^{2}$
Thus, $20^{2}=B D^{2}+12^{2}$.
$B D^{2}=20^{2}-12^{2}=256$
$B D=\sqrt{256}=16$
In right $\triangle A B D$,
$\sin x^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{B D}{A B}=\frac{16}{20}=\frac{4}{5}$.
7. $\frac{5}{13}$

Sketch triangle $A B C$.

$$
\begin{aligned}
& A B^{2}=B C^{2}+A C^{2} \\
& A B^{2}=10^{2}+24^{2}=676 \\
& A B=\sqrt{676}=26 \\
& \sin A=\frac{10}{26}=\frac{5}{13}
\end{aligned}
$$

8. 9

$\cos x^{\circ}=\frac{A C}{A B}=\frac{3}{5}$
Let $A C=3 x$ and $A B=5 x$.
$A B^{2}=B C^{2}+A C^{2} \quad$ Pythagorean Theorem
$(5 x)^{2}=12^{2}+(3 x)^{2} \quad B C=12$
$25 x^{2}=144+9 x^{2}$
$16 x^{2}=144$
$x^{2}=9$
$x=\sqrt{9}=3$
Therefore, $A C=3 x=3(3)=9$
9. 10.5

According to the complementary angle theorem, $\sin \theta=\cos (90-\theta)$.
If $\sin (5 x-10)^{\circ}=\cos (3 x+16)^{\circ}$,
$3 x+16=90-(5 x-10)$.
$3 x+16=90-5 x+10$
$3 x+16=100-5 x$
$8 x=84$
$x=10.5$

