Answer Key

Section 15-1 1. B 2. C 3. B 4. D 5. C Section 15-2 1. B 2. C 3. D 4. A Section 15-3 2. C 1. A 3. B 4. D Chapter 15 Practice Test 1. D 2. C 3.C 4. B 5. D 7. $\frac{5}{13}$ 6. D 8.9 9.10.5

Answers and Explanations

Section 15-1

1. B

Draw a perpendicular segment from B to the opposite side AC. Let the perpendicular segment intersect side AC at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6$$
.
In right $\triangle ABD$,
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$.

2. C

$$AB^{2} = BD^{2} + AD^{2}$$
 Pythagorean Theorem

$$10^{2} = BD^{2} + 6^{2}$$

$$100 = BD^{2} + 36$$

$$64 = BD^{2}$$

$$8 = BD$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.8$$

3. B

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$

4.D

If x and y are acute angles and $\cos x^{\circ} = \sin y^{\circ}$, x + y = 90 by the complementary angle theorem.

(3a-14) + (50-a) = 90 x = 3a-14, y = 50-a 2a + 36 = 90 Simplify. 2a = 54a = 27

5. C

I.
$$\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral I is true.

II.
$$\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral II is true.

III.
$$\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}$$

Roman numeral III is false.

Section 15-2

1. B

The graph shows P(x, y) = P(1, 1). Thus, x = 1and y = 1. Use the distance formula to find the length of radius *OA*.

$$OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

sin $\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \text{ or } \sin \theta = \frac{\sqrt{2}}{2}$

Therefore, the measure of $\angle POQ$ is 45° , which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians. Thus, $k = \frac{1}{4}$.

2. C

Use the complementary angle theorem. $\cos(\theta) = \sin(90^\circ - \theta)$, or $\cos(\theta) = \sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8})$. All the other answer choices have values different from $\cos(\frac{\pi}{8})$.

3. D

In
$$\triangle OAD$$
, $\sin\frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$.
Since $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$.
Therefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A

Use the distance formula to find the length of *OA*. $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$

$$\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}$$

Section 15-3

1. A

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, x = -1

and $y = \sqrt{3}$. To find the length of *OP*, use the Pythagorean theorem.

 $OP^2 = PR^2 + OR^2 = (\sqrt{3})^2 + (-1)^2 = 4$ Which gives OP = 2.

2. C

Since the terminal side of $(a+180)^{\circ}$ is OT, the value of $\cos(a+180)^{\circ}$ is equal to $\frac{OS}{OT}$. $\frac{OS}{OT} = \frac{1}{2}$

3. B

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, $x = -\sqrt{3}$ and y = -1. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (-1)^2 + (\sqrt{3})^2 = 4$ Which gives OP = 2. Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of

 $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian.

$$k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$$

Therefore, $k = \frac{7}{6}$

4. D

$$\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{-\sqrt{3}}$$

Chapter 15 practice Test

1. D

 $\frac{1}{\sqrt{3}}$

In
$$\triangle ABC$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$.
If $\tan \theta = \frac{3}{4}$, then $BC = 3$ and $AC = 4$.
By the Pythagorean theorem,
 $AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$, thus
 $AB = \sqrt{25} = 5$.

2. C

 $\sin\theta = \frac{BC}{AB} = \frac{3}{5}$

3. C

Draw segment *PR*, which is perpendicular to the *x*-axis. In right triangle *POR*, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (\frac{\sqrt{3}}{2})^2 + (\frac{-1}{2})^2 = \frac{3}{4} + \frac{1}{4} = 1$ Which gives OP = 1. Thus, triangle *OPR* is $30^\circ - 60^\circ - 90^\circ$ triangle and the measure of $\angle POR$ is 60° , which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then *k* is equal to $\frac{2}{3}$.

4. B

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$. $\frac{OS}{OT} = \frac{1}{2}$

5. D

Area of triangle $ABC = \frac{1}{2}(AC)(BD)$ Check each answer choice.

A) $\frac{1}{2}(AB\cos \angle A + BC\cos \angle C)(AB\cos \angle ABD)$ $\frac{1}{2}(AD\cos \angle ABD)$

$$= \frac{1}{2} (AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC}) (AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2} (AD + CD) (BD) = \frac{1}{2} (AC) (BD)$$

B)
$$\frac{1}{2}(AB\cos \angle A + BC\cos \angle C)(BC\sin \angle C)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(BC \cdot \frac{BD}{BC})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

C)
$$\frac{1}{2}(AB\sin \angle ABD + BC\sin \angle CBD)(AB\sin \angle A)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$
D)
$$\frac{1}{2}(AB\sin \angle ABD + BC\sin \angle CBD)(BC\cos \angle C)$$

$$2^{2}$$

$$= \frac{1}{2} (AB \cdot \frac{AD}{AB} + BC \frac{CD}{BC})(BC \cdot \frac{CD}{BC})$$

$$= \frac{1}{2} (AD + CD)(CD) = \frac{1}{2} (AC)(CD)$$
Which does not represent the area of

triangle *ABC*.

Choice D is correct.

6. D

Draw segment *BD*, which is perpendicular to side *AC*. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12$$
.
By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$
Thus, $20^2 = BD^2 + 12^2$.
 $BD^2 = 20^2 - 12^2 = 256$
 $BD = \sqrt{256} = 16$
In right $\triangle ABD$,
 $\sin x^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$.

7.
$$\frac{5}{13}$$

Sketch triangle ABC.

 $AB^{2} = BC^{2} + AC^{2}$ $AB^{2} = 10^{2} + 24^{2} = 676$ $AB = \sqrt{676} = 26$ $\sin A = \frac{10}{26} = \frac{5}{13}$

8. 9

$$\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}$$
Let $AC = 3x$ and $AB = 5x$.
 $AB^2 = BC^2 + AC^2$ Pythagorean Theorem
 $(5x)^2 = 12^2 + (3x)^2$ $BC = 12$
 $25x^2 = 144 + 9x^2$
 $16x^2 = 144$
 $x^2 = 9$
 $x = \sqrt{9} = 3$
Therefore, $AC = 3x = 3(3) = 9$

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If
$$\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$$
,
 $3x+16 = 90 - (5x-10)$.
 $3x+16 = 90 - 5x + 10$
 $3x+16 = 100 - 5x$
 $8x = 84$
 $x = 10.5$