Answer Key

Section 13-1

1. D
2. C
3. A
4. B
5. B

Section 13-2

1. A
2. C
3. D
4. B
5. 8
6. 3

Section 13-3

1. B
2. C
3. B
4. A
5. D
6. D

Section 13-4

1. B
2. A
3. B
4. C
5. $\frac{5}{9}$
6. 2

Section 13-5

1. B
2. C
3. D
4. C
5. 23
6. 2

Chapter 13 Practice Test

1. C
2. D
3. B
4. A
5. C
6. B
7. B
8. D
9. C
10. D

Answers and Explanations

Section 13-1

1. D
$f(x)=a x^{3}+x^{2}-18 x-9$
If point $(3,0)$ lies on the graph of f, substitute 0 for f and 3 for x.
$0=a(3)^{3}+(3)^{2}-18(3)-9$.
$0=27 a-54$
$2=a$
2. C

If the graph of a polynomial function f has an x-intercept at a, then $(x-a)$ is a factor of $f(x)$. Since the graph of function f has x-intercepts at $-7,-5$, and $5,(x+7),(x+5)$, and $(x-5)$ must each be a factor of $f(x)$. Therefore, $f(x)=(x+7)(x+5)(x-5)=(x+7)\left(x^{2}-5\right)$.
3. A

The minimum value of a graphed function is the minimum y-value of all the points on the graph. For the graph shown, when $x=-3, y=-2$ and when $x=5, y=-4$, so the minimum is at $(5,-4)$ and the minimum value is -4 .
4. B

A zero of a function corresponds to an x-intercept of the graph of the function on the $x y$-plane.
Only the graph in choice B has four x-intercepts. Therefore, it has the four distinct zeros of function f.
5. B

I. f is not strictly decreasing for $-5<x<0$, because on the interval $-4<x<-2, f$ is not decreasing.

Roman numeral I is not true.
II. The coordinates $(-3,1)$ is on the graph of f, therefore, $f(-3)=1$
Roman numeral II is true.
III. For the graph shown, when $x=0, y=-3$ and when $x=5, y=-2$, so f is minimum at $x=0$.

Roman numeral III is not true.

Section 13-2

1. A

If -1 and 1 are two real roots of the polynomial function, then $f(-1)=0$ and $f(1)=0$. Thus $f(-1)=a(-1)^{3}+b(-1)^{2}+c(-1)+d=0$ and $f(1)=a(1)^{3}+b(1)^{2}+c(1)+d=0$.
Simplify the two equations and add them to each other.

$$
\begin{aligned}
-a+b-c+d & =0 \\
+\bigsqcup a+b+c+d & =0 \\
\hline 2 b+2 d & =0
\end{aligned} \text { or } b+d=0 . ~ \$
$$

Also $f(0)=3$, since the graph of the polynomial passes through $(0,3)$.
$f(0)=a(0)^{3}+b(0)^{2}+c(0)+d=3$ implies $d=3$.
Substituting $d=3$ in the equation $b+d=0$ gives $b+3=0$, or $b=-3$.
2. C

If polynomial $p(x)=81 x^{5}-121 x^{3}-36$ is divided by $x+1$, the remainder is $p(-1)$.
$p(-1)=81(-1)^{5}-121(-1)^{3}-36=4$
The remainder is 4 .
3. D

If $x-2$ is a factor for polynomial $p(x)$, then

$$
\begin{aligned}
p(2) & =0 \\
p(x) & =a\left(x^{3}-2 x\right)+b\left(x^{2}-5\right) \\
p(2) & =a\left(2^{3}-2(2)\right)+b\left(2^{2}-5\right) \\
& =a(8-4)+b(4-5) \\
& =4 a-b=0
\end{aligned}
$$

4. B

If $(x-a)$ is a factor of $f(x)$, then $f(a)$ must be equal to 0 . Based on the table, $f(-3)=0$.

Therefore, $x+3$ must be a factor of $f(x)$.
5. 8

$$
\begin{array}{ll}
x^{3}-8 x^{2}+3 x-24=0 & \\
\left(x^{3}-8 x^{2}\right)+(3 x-24)=0 & \text { Group terms } \\
x^{2}(x-8)+3(x-8)=0 & \text { Factor out the GCF. } \\
\left(x^{2}+3\right)(x-8)=0 & \text { Distributive Property } \\
x^{2}+3=0 \text { or } x-8=0 & \text { Solutions }
\end{array}
$$

Since $x^{2}+3=0$ does not have a real solution, $x-8=0$, or $x=8$, is the only solution that makes the equation true.
6. 3

$$
\begin{array}{ll}
x^{4}-8 x^{2}=9 & \\
x^{4}-8 x^{2}-9=0 & \text { Make one side } 0 . \\
\left(x^{2}-9\right)\left(x^{2}+1\right)=0 & \text { Factor. } \\
(x+3)(x-3)\left(x^{2}+1\right)=0 & \text { Factor. }
\end{array}
$$

Since $x^{2}+1=0$ does not have a real solution, the solutions for x are $x=-3$ and $x=3$.
Since it is given that $x>0, x=3$ is the only solution to the equation.

Section 13-3

1. B

$$
a^{-\frac{1}{2}}=\frac{1}{a^{\frac{1}{2}}}=\frac{1}{\sqrt{a}}
$$

2. C

$$
\begin{array}{ll}
\frac{1}{3-2 \sqrt{2}} & \\
=\frac{1}{3-2 \sqrt{2}} \cdot \frac{3+2 \sqrt{2}}{3+2 \sqrt{2}} & \begin{array}{l}
\text { Multiply the conjugate of } \\
\text { of the denominator. }
\end{array} \\
=\frac{3+2 \sqrt{2}}{(3)^{2}-(2 \sqrt{2})^{2}} & (a-b)(a+b)=a^{2}-b^{2} \\
=\frac{3+2 \sqrt{2}}{9-8} & \text { Simplify. } \\
=3+2 \sqrt{2} &
\end{array}
$$

3. B
$(x+1)^{3}=-64$
$x+1=\sqrt[3]{-64} \quad$ Definition of cube root.
$x+1=-4$
$x=-5$
$\sqrt[3]{-64}=(-64)^{\frac{1}{3}}=-4$
Subtract 1 from each side.
4. A

$$
\begin{aligned}
& \sqrt{8}+\sqrt{18}-\sqrt{32} \\
& =\sqrt{4} \sqrt{2}+\sqrt{9} \sqrt{2}-\sqrt{16} \sqrt{2} \\
& =2 \sqrt{2}+3 \sqrt{2}-4 \sqrt{2} \\
& =\sqrt{2}
\end{aligned}
$$

5. D

$$
\begin{array}{ll}
(1+\sqrt{3})(2-\sqrt{3}) & \\
=2-\sqrt{3}+2 \sqrt{3}-\sqrt{3} \sqrt{3} & \\
\text { FOIL } \\
=2+\sqrt{3}-3 & \\
=-1+\sqrt{3} & \\
\text { Combine like radicals. } \\
=-1 \text { Simplify. }
\end{array}
$$

6. D

$$
b^{\frac{5}{3}}=b^{1} \cdot b^{\frac{2}{3}}=b \cdot\left(b^{2}\right)^{\frac{1}{3}}=b \cdot \sqrt[3]{b^{2}}
$$

Section 13-4

1. B

$$
\begin{array}{ll}
11-\sqrt{2 x+3}=8 & \\
11-\sqrt{2 x+3}-11=8-11 & \text { Subtract } 11 \text { from each side. } \\
-\sqrt{2 x+3}=-3 & \text { Simplify. } \\
(-\sqrt{2 x+3})^{2}=(-3)^{2} & \text { Square each side. } \\
2 x+3=9 & \text { Simplify. } \\
2 x=6 & \text { Subtract } 3 \text { from each side. } \\
x=3 & \text { Divide each side by } 2 .
\end{array}
$$

2. A
$\sqrt{-3 x+4}=7$
$(\sqrt{-3 x+4})^{2}=(7)^{2}$
$-3 x+4=49$
$-3 x=45$
$x=-15$
Square each side.
Simplify.
Subtract 4 from each side.
Divide each side by -3 .
3. B
$\sqrt{x+18}=x-2$
$(\sqrt{x+18})^{2}=(x-2)^{2} \quad$ Square each side.
$x+18=x^{2}-4 x+4$
Simplify.
$0=x^{2}-5 x-14$
$0=(x-7)(x+2)$
Make one side 0 .
$0=x-7$ or $0=x+2$
Zero Product Property
$7=x$ or $-2=x$
Check each x-value in the original equation.
$\sqrt{7+18}=7-2 \quad x=7$
$\sqrt{25}=5$
$5=5$
Simplify.
$\sqrt{-2+18}=-2-2$
$\sqrt{16}=-4$
$4=-4$
Simplify.
False

Thus, 7 is the only solution.
4. C

$$
\begin{array}{ll}
\sqrt{5 x-12}=3 \sqrt{2} & \\
(\sqrt{5 x-12})^{2}=(3 \sqrt{2})^{2} & \text { Square each side. } \\
5 x-12=18 & \text { Simplify. } \\
5 x=30 & \text { Add } 12 \text { to each side. } \\
x=6 & \text { Divide by } 5 \text { on each side. }
\end{array}
$$

5. $\frac{5}{9}$

$$
\begin{array}{ll}
\sqrt{2-3 x}=\frac{1}{3} a & \\
\sqrt{2-3 x}=\frac{1}{3} \sqrt{3} & a=\sqrt{3} \\
(\sqrt{2-3 x})^{2}=\left(\frac{1}{3} \sqrt{3}\right)^{2} & \text { Square each side. } \\
2-3 x=\frac{1}{3} & \text { Simplify. } \\
-3 x=-\frac{5}{3} & \text { Subtract } 2 \text { from each side. } \\
-\frac{1}{3}(-3 x)=-\frac{1}{3}\left(-\frac{5}{3}\right) & \text { Multiply each side by }-\frac{1}{3} . \\
x=\frac{5}{9} & \text { Simplify. }
\end{array}
$$

6. 2
$\sqrt[3]{x-k}=-2$
$(\sqrt[3]{x-k})^{3}=(-2)^{3} \quad$ Cube each side.
$x-k=-8 \quad$ Simplify.
$x-(8-\sqrt{2})=-8 \quad k=8-\sqrt{2}$
$x-8+\sqrt{2}=-8 \quad$ Simplify.
$x+\sqrt{2}=0$
Add 8 to each side.
$x=-\sqrt{2} \quad$ Subtract $\sqrt{2}$.
$(x)^{2}=(-\sqrt{2})^{2} \quad$ Square each side.
$x^{2}=2 \quad$ Simplify.

Section 13-5

1. B

$$
\begin{aligned}
& \sqrt{-1}-\sqrt{-4}+\sqrt{-9} \\
& =i-i \sqrt{4}+i \sqrt{9} \\
& =i-2 i+3 i \\
& =2 i
\end{aligned}
$$

2. C

$$
\begin{array}{ll}
\sqrt{-2} \cdot \sqrt{-8} & \\
=i \sqrt{2} \cdot i \sqrt{8} & \sqrt{-2}=i \sqrt{2}, \sqrt{-8}=i \sqrt{8} \\
=i^{2} \sqrt{16} & \\
=-4 & i^{2}=-1
\end{array}
$$

3. D
$\frac{3-i}{3+i}$
$=\frac{3-i}{3+i} \cdot \frac{3-i}{3-i} \quad$ Rationalize the denominator.
$=\frac{9-6 i+i^{2}}{9-i^{2}} \quad$ FOIL
$=\frac{9-6 i-1}{9+1} \quad i^{2}=-1$
$=\frac{8-6 i}{10} \quad$ Simplify.
$=\frac{4-3 i}{5}$ or $\frac{4}{5}-\frac{3 i}{5}$
4. C
$\frac{1}{2}(5 i-3)-\frac{1}{3}(4 i+5)$
$=\frac{5}{2} i-\frac{3}{2}-\frac{4 i}{3}-\frac{5}{3} \quad$ Distributive Property
$=\frac{15}{6} i-\frac{9}{6}-\frac{8 i}{6}-\frac{10}{6} \quad 6$ is the GCD.
$=\frac{7}{6} i-\frac{19}{6} \quad$ Simplify.
5. 23
$(4+i)^{2}=a+b i$
$16+8 i+i^{2}=a+b i \quad$ FOIL
$16+8 i-1=a+b$
$15+8 i=a+b i$
$i^{2}=-1$
$15=a$ and $8=$
Definition of Equal Complex Numbers

Therefore, $a+b=15+8=23$.
6. 2

$$
\begin{aligned}
& \frac{3-i}{1-2 i}=\frac{3-i}{1-2 i} \cdot \frac{1+2 i}{1+2 i}=\frac{3+6 i-i-2 i^{2}}{1-4 i^{2}} \\
& =\frac{3+6 i-i+2}{1+4}=\frac{5+5 i}{5}=1+i=a+b i
\end{aligned}
$$

Therefore, $a=1$ and $b=1$, and $a+b=1+1=2$.

Chapter 13 Practice Test

1. C
$f(x)=2 x^{3}+b x^{2}+4 x-4$
$f\left(\frac{1}{2}\right)=0$ because the graph of f intersects the
x-axis at $\left(\frac{1}{2}, 0\right)$.
$f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+b\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)-4=0$
Solving the equation for b gives $b=7$.
Thus $f(x)=2 x^{3}+7 x^{2}+4 x-4$.
Also $k=f(-2)$, because $(-2, k)$ lies on the graph of f.
$k=f(-2)=2(-2)^{3}+7(-2)^{2}+4(-2)-4$
Solving the equation for k gives $k=0$.
2. D

$g(x)=-3$ has 3 points of intersection with $y=f(x)$, so there are 3 real solutions. $g(x)=-1$ has 3 points of intersection with $y=f(x)$, so there are 3 real solutions.
$g(x)=1$ has 3 points of intersection with $y=f(x)$, so there are 3 real solutions.
$g(x)=3$ has 1 point of intersection with $y=f(x)$, so there is 1 real solution.

Choice D is correct
3. B

If $x+2$ is a factor of
$f(x)=-\left(x^{3}+3 x^{2}\right)-4(x-a)$, then $f(-2)=0$.
$f(-2)=-\left((-2)^{3}+3(-2)^{2}\right)-4(-2-a)=0$
$-(-8+12)+8+4 a=0$
$4+4 a=0$
$a=-1$
4. A

The solutions to the system of equations are the points where the circle, parabola, and line all intersect. That point is $(3,0)$ and is therefore the only solution to the system.
5. C

$$
\begin{array}{ll}
\frac{(1-i)^{2}}{1+i} & \\
=\frac{1-2 i+i^{2}}{1+i} & \text { FOIL the numerator. } \\
=\frac{1-2 i-1}{1+i} & i^{2}=-1 \\
=\frac{-2 i}{1+i} & \text { Simplify. } \\
=\frac{-2 i}{1+i} \cdot \frac{1-i}{1-i} & \text { Rationalize the denominator. } \\
=\frac{-2 i+2 i^{2}}{1-i^{2}} & \text { FOIL } \\
=\frac{-2 i-2}{2} & i^{2}=-1 \\
=-i-1 &
\end{array}
$$

6. B

$$
a \sqrt[3]{a}=a \cdot a^{\frac{1}{3}}=a^{1+\frac{1}{3}}=a^{\frac{4}{3}}
$$

7. B

$$
\begin{aligned}
& p(x)=-2 x^{3}+4 x^{2}-10 x \\
& q(x)=x^{2}-2 x+5
\end{aligned}
$$

In $p(x)$, factoring out the GCF, $-2 x$, yields

$$
p(x)=-2 x\left(x^{2}-2 x+5\right)=-2 x \cdot q(x) .
$$

Let's check each answer choice.
A) $f(x)=p(x)-\frac{1}{2} q(x)$

$$
=-2 x \cdot q(x)-\frac{1}{2} q(x)=\left(-2 x-\frac{1}{2}\right) q(x)
$$

$q(x)$ is not a factor of $x-1$ and $\left(-2 x-\frac{1}{2}\right)$ is not a factor of $x-1 . f(x)$ is not divisible by $x-1$.
B) $g(x)=-\frac{1}{2} p(x)-q(x)$
$=-\frac{1}{2}[-2 x \cdot q(x)]-q(x)=(x-1) q(x)$
Since $g(x)$ is $x-1$ times $q(x), g(x)$ is divisible by $x-1$.
Choices C and D are incorrect because $x-1$ is not a factor of the polynomials $h(x)$ and $k(x)$.
8. D

$$
\begin{array}{ll}
\sqrt{2 x+6}=x+3 & \\
(\sqrt{2 x+6})^{2}=(x+3)^{2} & \text { Square each side. } \\
2 x+6=x^{2}+6 x+9 & \text { Simplify. } \\
x^{2}+4 x+3=0 & \text { Make one side } 0 . \\
(x+1)(x+3)=0 & \text { Factor. } \\
x+1=0 \text { or } x+3=0 & \text { Zero Product Property } \\
x=-1 \text { or } x=-3 &
\end{array}
$$

Check each x-value in the original equation.
$\sqrt{2(-1)+6}=-1+3 \quad x=-1$
$\sqrt{4}=2 \quad$ Simplify.
$2=2 \quad$ True
$\sqrt{2(-3)+6}=-3+3 \quad x=-3$
$0=0$
True
Thus, -1 and -3 are both solutions to the equation.
9. C

Use the remainder theorem.
$p\left(\frac{1}{2}\right)=24\left(\frac{1}{2}\right)^{3}-36\left(\frac{1}{2}\right)^{2}+14=8$
Therefore, the remainder of polynomial
$p(x)=24 x^{3}-36 x^{2}+14$ divided by $x-\frac{1}{2}$
is 8 .
10. D

If $(x-a)$ is a factor of $f(x)$, then $f(a)$ must equal to 0 . Thus, if $x+2, x+1$ and $x-1$ are factors of f, we have $f(-2)=f(-1)=f(1)=0$.

Choice D is correct.

