## Exercises - Polynomial Functions and Their Graphs

## 1

The graph of $f(x)=a x^{3}+x^{2}-18 x-9$ intersects the $x$-axis at $(3,0)$. What is the value of $a$ ?
A) -1
B) 0
C) 1
D) 2

## 2

In the $x y$-plane, the graph of function $f$ has $x$-intercepts at $-7,-5$, and 5 . Which of the following could define $f$ ?
A) $f(x)=(x-7)\left(x^{2}-25\right)$
B) $f(x)=(x-7)\left(x^{2}+25\right)$
C) $f(x)=(x+7)\left(x^{2}-25\right)$
D) $f(x)=(x+7)\left(x^{2}+25\right)$

## 3



What is the minimum value of the function graphed on the $x y$-plane above, for $-5 \leq x \leq 5$ ?
A) -4
B) -3
C) -2
D) $-\infty$

4
If function $f$ has four distinct zeros, which of the following could represent the complete graph of $f$ in the $x y$-plane?
A)

C)

B)

D)


## 5



The complete graph of function $f$ is shown on the $x y$-plane above, for $-5 \leq x \leq 5$. Which of the following is/are true?
I. $f$ is strictly decreasing for $-5<x<0$.
II. $f(-3)=1$
III. $f$ is minimum at $x=5$.
A) I only
B) II only
C) III only
D) I and II only

