Answer Key

Section 12-1

1. B
2. C
3. A
4. D
5. 6
6.4

Section 12-2

1. B
2. B
3. D
4. C
5. A

Section 12-3

1. A
2. D
3. 395

Section 12-4

1. D
2. B
3. C
4. B
5. 1.04
6. 446

Chapter 12 Practice Test

1. B
2. A
3.C
3. D
4. B
5. C
6. $8485 \quad 8.10$ 9. 283

Answers and Explanations

Section 12-1

1. B

$$
\begin{array}{ll}
g(x)=1-x \\
g(-2)=1-(-2) & \text { Substitute }-2 \text { for } x . \\
=3 \\
f(x)=x^{2}-3 x-1 & \\
f \circ g(-2)=f(g(-2)) & \\
=f(3) & g(-2)=3 \\
=(3)^{2}-3(3)-1 & \text { Substitute } 3 \text { for } x . \\
=-1 &
\end{array}
$$

2. C

$$
\begin{aligned}
& f=\left\{(-4,12),(-2,4),(2,0),\left(3, \frac{3}{2}\right)\right\} \Rightarrow \\
& f(-4)=12, f(-2)=4, f(2)=0 \text { and } f(3)=\frac{3}{2} \\
& g=\{(-2,5),(0,1),(4,-7),(5,-9)\} \Rightarrow \\
& g(-2)=5, g(0)=1, g(4)=-7, g(5)=-9 \\
& g \circ f(2)=g(f(2)) \\
& =g(0) \\
& =1
\end{aligned}
$$

3. A

$$
\begin{array}{ll}
f(g(-1)) & \\
=f(1) & g(-1)=1 \\
=-2 & f(1)=-2
\end{array}
$$

4. D

$$
\begin{aligned}
& g(x)=2-x \\
& g(3)=2-3 \\
& =-1
\end{aligned} \quad \text { Substitute } 3 \text { for } x .
$$

$$
f(g(3))
$$

$$
=f(-1) \quad g(3)=-1
$$

$$
=\frac{1-5(-1)}{2} \quad \text { Substitute }-1 \text { for } x \text {. }
$$

$$
=3
$$

5. 6

x	$f(x)$	$g(x)$
-2	-5	0
0	6	4
3	0	-5

Based on the table, $g(-2)=0$.

$$
\begin{aligned}
& f(g(-2)) \\
& =f(0) \\
& =6
\end{aligned}
$$

6. 4

Based on the table, $f(3)=0$.

$$
\begin{aligned}
& g(f(3)) \\
& =g(0) \\
& =4
\end{aligned}
$$

Section 12-2

1. B

$$
\begin{array}{rlrl}
a_{n} & =\sqrt{\left(a_{n-1}\right)^{2}+2} & \\
a_{1} & =\sqrt{\left(a_{0}\right)^{2}+2} & n=1 \\
& =\sqrt{(\sqrt{2})^{2}+2} & & a_{0}=\sqrt{2} \\
& =\sqrt{4}=2 & &
\end{array}
$$

$$
\begin{array}{rlrl}
a_{2} & =\sqrt{\left(a_{1}\right)^{2}+2} & & n=2 \\
& =\sqrt{(2)^{2}+2} & & a_{1}=2 \\
& =\sqrt{6} &
\end{array}
$$

2. B

$$
\begin{array}{rlr}
a_{n+1} & =a_{n}-\frac{f\left(a_{n}\right)}{g\left(a_{n}\right)} & \\
a_{1} & =a_{0}-\frac{f\left(a_{0}\right)}{g\left(a_{0}\right)} & n=0 \\
& =1-\frac{f(1)}{g(1)} & a_{0}=1
\end{array}
$$

Since $f(x)=x^{2}-3 x$ and $g(x)=2 x-3$,

$$
f(1)=(1)^{2}-3(1)=-2 \text { and } g(1)=2(1)-3=-1 .
$$

Thus, $a_{1}=1-\frac{f(1)}{g(1)}=1-\frac{-2}{-1}=-1$.

$$
\begin{aligned}
a_{2} & =a_{1}-\frac{f\left(a_{1}\right)}{g\left(a_{1}\right)} & n=1 \\
& =-1-\frac{f(-1)}{g(-1)} & a_{1}=-1
\end{aligned}
$$

$f(-1)=(-1)^{2}-3(-1)=4$ and
$g(-1)=2(-1)-3=-5$.
Thus, $a_{2}=-1-\frac{f(-1)}{g(-1)}=-1-\frac{4}{-5}=-\frac{1}{5}$
3. D

$$
\begin{aligned}
& f(x)=\sqrt{2 x^{2}-1} \\
& \quad f \circ f \circ f(2) \\
& =f\left(f(f(2))=f\left(f\left(\sqrt{2(2)^{2}-1}\right)\right)\right. \\
& =f(f(\sqrt{7}))=f\left(\sqrt{2(\sqrt{7})^{2}-1}\right) \\
& =f(\sqrt{13})=\sqrt{2(\sqrt{13})^{2}-1} \\
& =\sqrt{25}=5
\end{aligned}
$$

4. C

$$
\begin{aligned}
A_{n} & =\left(1+\frac{r}{100}\right) \cdot A_{n-1}+12 b \\
A_{1} & =\left(1+\frac{r}{100}\right) \cdot A_{0}+12 b \quad n=1 \\
& =\left(1+\frac{5}{100}\right) \cdot 12,000+12(400) \\
& =17,400
\end{aligned}
$$

$$
\begin{array}{rlrl}
A_{2} & =\left(1+\frac{r}{100}\right) \cdot A_{1}+12 b & n=2 \\
& =\left(1+\frac{5}{100}\right) \cdot 17,400+12(400) & A_{1}=17,400 \\
& =23,070 &
\end{array}
$$

$$
\begin{array}{rlrl}
A_{3} & =\left(1+\frac{r}{100}\right) \cdot A_{2}+12 b & n=3 \\
& =\left(1+\frac{5}{100}\right) \cdot 23,070+12(400) & A_{2}=23,070 \\
& =29,023.50 &
\end{array}
$$

5. A

$$
\begin{aligned}
P_{n} & =0.85 P_{n-1}+20 & & \\
P_{1} & =0.85 P_{0}+20 & & n=1 \\
& =0.85(400)+20 & & P_{0}=400 \\
& =360 & & \\
P_{2} & =0.85 P_{1}+20 & & n=2 \\
& =0.85(360)+20 & & P_{1}=360 \\
& =326 & & n=2 \\
P_{3} & =0.85 P_{2}+20 & & P_{2}=326 \\
& =0.85(326)+20 & & \\
& =297.1 & &
\end{aligned}
$$

Section 12-3

1. A

Suppose the initial water level was 100 units. If the water level decreases by 10 percent each year, the water level will be $100(1-0.1)^{n}$, or $100(0.9)^{n}$, n years later. The water level decreases exponentially, not linearly.
Of the graphs shown, only choice A would appropriately model exponential decrease.
2. D
I. At time $t=0$, the price of model A was $\$ 30,000$ and the price of model B was $\$ 24,000$. To find out what percent the price of model A was higher than the price of model B, use the following equation.

$$
\begin{aligned}
& 30,000=24,000(1 \underbrace{+\frac{x}{100}}_{x \% \text { more than }}) \\
& \frac{30,000}{24,000}=1+\frac{x}{100} \\
& \Rightarrow 1.25=1+\frac{x}{100} \Rightarrow 0.25=\frac{x}{100} \\
& \Rightarrow 25=x
\end{aligned}
$$

Therefore the price of model A was 25% higher than and the price of model B.

Roman numeral I is true.
To find out what percent the price of model B was less than the price of model A, use the following equation.

$$
\begin{aligned}
& 24,000=30,000(1 \underbrace{-\frac{x}{100}}_{x \% \text { less than }}) \\
& \frac{24,000}{30,000}=1-\frac{x}{100} \\
& 0.8=1-\frac{x}{100} \Rightarrow 0.2=\frac{x}{100} \\
& \Rightarrow 20=x
\end{aligned}
$$

Therefore the price of model B was 20% less than the price of model A.

Roman numeral II is true.

From time $t=0$ to $t=6$, the average rate of decrease in the value of model A $=\frac{\text { amount of decrease }}{\text { change in years }}=\frac{30,000-12,000}{6}$ $=3,000$
From time $t=0$ to $t=6$, the average rate of decrease in the value of model B

$$
\begin{aligned}
& =\frac{\text { amount of decrease }}{\text { change in years }}=\frac{24,000-12,000}{6} \\
& =2,000
\end{aligned}
$$

Therefore, from time $t=0$ to $t=6$, the average rate of decrease in the value of model A was 1.5 times the average rate of decrease in the value of model B.
Roman numeral III is also true.
Choice D is correct.
3. 395

$$
\begin{aligned}
& f(x)=12,000(0.9)^{x} \text { and } g(x)=14,000(0.85)^{x} \\
& g(2)-f(2)=14,000(0.85)^{2}-12,000(0.9)^{2} \\
& =10,115-9720=395
\end{aligned}
$$

Section 12-4

1. D

The present population must be multiplied by a factor of 2 to double. If a certain population doubles every 40 days, the population grows
by a multiple of (2) $2^{\frac{1}{40}}$ each day. After t days, the population will be multiplied by $(2)^{\frac{t}{40}}$. If the population starts with 12 rabbits, after t days, the population will be $12 \times(2)^{\frac{t}{40}}$.
2. B

For the present population to decrease by 4%, the initial population must be multiplied by a factor of 0.96 . If population P is 80,000 this year, it will be $80,000(0.96)$ one year later, $80,000(0.96)(0.96)$ two years later, $80,000(0.96)(0.96)(0.96)$ three years later, and so on. After t years, the population will be $80,000(0.96)^{t}$.
3. C

For the price of a house to increase at an annual growth rate of r, it must be multiplied by a factor of $(1+r)$ each year. If the price of the house is $\$ 150,000$ this year, it will be $150,000(1+r)$ one year later, $150,000(1+r)(1+r)$ two years later, $150,000(1+r)(1+r)(1+r)$ three years later, and so on. Thus, 10 years later, the price of the house will be $150,000(1+r)^{10}$.
4. B

If the half-life of a substance is 12 days, half of the substance decays every 12 days.
Make a chart.

Amount	Days
128	0
$128 \times \frac{1}{2}$	12 days after
$128 \times \frac{1}{2} \times \frac{1}{2}$	24 days after
$128 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$	36 days after
$128 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$	48 days after

Therefore, after 48 days, there will be $128 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$, or 8 milligrams, of the radioactive substance left.

5. 1.04

The initial deposit earns 4 percent interest compounded annually. Thus at the end of one year, the new value of the account is the initial deposit of $\$ 3,000$ plus 4 percent of the initial deposit: $\$ 3,000+0.04(\$ 3,000)=\$ 3,000(1+0.04)$.
Since the interest is compounded annually, the value at the end of each succeeding year is the previous year's value plus 4 percent of the previous year's value. Thus after 2 years, the value will be $\$ 3,000(1.04)(1.04)$. After 3 years, the value will be $\$ 3,000(1.04)(1.04)(1.04)$

After t years, the value will be $\$ 3,000(1.04)^{t}$. Therefore, the value of x in the expression $\$ 3,000(x)^{t}$ is 1.04 .
6. 446

The difference in the amount after 10 years will be $\$ 3,000(1.05)^{10}-\$ 3,000(1.04)^{10}$
$\approx \$ 445.95$.
To the nearest dollar the difference in the amount will be $\$ 446$.

Chapter 12 Practice Test

1. B

$$
\begin{aligned}
& f(x)=\sqrt{2 x} \text { and } g(x)=2 x^{2} \\
& g(1)=2(1)^{2}=2 \text { and } f(1)=\sqrt{2(1)}=\sqrt{2} \\
& f(g(1))-g(f(1)) \\
& =f(2)-g(\sqrt{2}) \\
& =\sqrt{2(2)}-2(\sqrt{2})^{2} \\
& =\sqrt{4}-2(2)=2-4=-2
\end{aligned}
$$

2. A

$$
\begin{aligned}
& f(x)=\sqrt{625-x^{2}} \text { and } g(x)=\sqrt{225-x^{2}} \\
& f(5)=\sqrt{625-5^{2}}=\sqrt{600} \\
& g(5)=\sqrt{225-5^{2}}=\sqrt{200} \\
& f(f(5))-g((g 5)) \\
& =f(\sqrt{600})-g(\sqrt{200}) \\
& =\left(\sqrt{625-(\sqrt{600})^{2}}\right)-\left(\sqrt{225-(\sqrt{200})^{2}}\right) \\
& =\sqrt{625-600}-\sqrt{225-200} \\
& =\sqrt{25}-\sqrt{25}=0
\end{aligned}
$$

3. C

Method I:
You can keep dividing by 2 until you get to a population of 6,400.

Year	Population
1980	51,200
1955	25,600
1930	12,800
1905	6,400

Method II:
Use the half-life formula, $A=P\left(\frac{1}{2}\right)^{t / d}$.
$6,400=51,200\left(\frac{1}{2}\right)^{t / 25}$
$\frac{6,400}{51,200}=\left(\frac{1}{2}\right)^{t / 25} \quad$ Divide each side by 51,200 .
$\frac{1}{8}=\left(\frac{1}{2}\right)^{t / 25} \quad$ Simplify
$\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{t / 25} \quad \frac{1}{8}=\left(\frac{1}{2}\right)^{3}$
$3=\frac{t}{25} \quad$ If $b^{x}=b^{y}$, then $x=y$.
$75=t$
Therefore, in year 1980-75, or 1905, the population of the town was 6,400 .
4. D

The table shows that one-half of the substance decays every 28 years. Therefore, the half-life of the radioactive substance is 28 years. Use the half-life formula, $A=P\left(\frac{1}{2}\right)^{t / d}$, to find out how much of the original amount of the substance will remain after 140 years. P is the initial amount, t is the number of years and d is the half-life.
$A=1,200\left(\frac{1}{2}\right)^{140 / 28}$
$=37.5 \quad$ Use a calculator.
To the nearest gram, 38 grams of the substance will remain after 140 years.
5. B

If the substance decays at a rate of 18% per year the amount of substance remaining each year will be multiplied by $(1-0.18)$, or 0.82 .
The initial amount of 100 grams will become
$100(1-0.18)$ one year later,
$100(1-0.18)(1-0.18)$ two years later, $100(1-0.18)(1-0.18)(1-0.18)$ three years later, and so on. Thus, t years later, the remaining amount of the substance, in grams, is $f(t)=100(0.82)^{t}$.
6. C

$$
5,000\left(1+\frac{r}{100}\right)^{t}
$$

The value of the 15 year investment at 6% annual compound interest

$$
=5,000\left(1+\frac{6}{100}\right)^{15}=5,000(1.06)^{15} .
$$

The value of the 12 year investment at 6% annual compound interest

$$
=5,000\left(1+\frac{6}{100}\right)^{12}=5,000(1.06)^{12} .
$$

The difference is
$=5,000(1.06)^{15}-5,000(1.06)^{12}$
$=5,000\left[(1.06)^{15}-(1.06)^{12}\right]$
7. 8485

$$
\begin{aligned}
P(t) & =24,000\left(\frac{1}{2}\right)^{\frac{t}{6}} \\
P(9) & =24,000\left(\frac{1}{2}\right)^{\frac{9}{6}} \\
& \text { Substitute } 9 \text { for } t . \\
& =24,000\left(\frac{1}{2}\right)^{\frac{3}{2}} \\
& \approx 8,485.28
\end{aligned} \quad \text { Use a calculator. }
$$

To the nearest dollar, the price of the truck 9 years after it was purchased is $\$ 8,485$.
8. 10

$$
f(t)=100(2)^{\frac{t}{d}}
$$

In the equation, d represents the amount of time it takes to double the population. The graph shows that the population was 100 at $t=0,200$ at $t=10$, and 400 at $t=20$. Therefore, the value of doubling time d is 10 days.
9. 283

$$
\begin{aligned}
f(t) & =100(2)^{\frac{t}{d}} \\
f(15) & =100(2)^{\frac{15}{10}}=100(2)^{1.5} \\
& \approx 282.84 \quad \text { Use a calculator. }
\end{aligned}
$$

The population of the insect after 15 days was 283 , to the nearest whole number.

