Exercises - Recursive Formula

1

A sequence is recursively defined by $a_n = \sqrt{(a_{n-1})^2 + 2}$. If $a_0 = \sqrt{2}$, what is the value of a_2 ?

- A) $\sqrt{5}$
- B) $\sqrt{6}$
- C) $\sqrt{8}$
- D) 3

2

A sequence is recursively defined by

 $a_{n+1} = a_n - \frac{f(a_n)}{g(a_n)}$. If $a_0 = 1$, $f(x) = x^2 - 3x$, and g(x) = 2x - 3, what is the value of a_2 ?

B) $-\frac{1}{5}$ C) 2 D) $\frac{3}{2}$

3

- If $f(x) = \sqrt{2x^2 1}$, what is the value of $f \circ f \circ f(2)$?
- A) $\sqrt{10}$
- B) $\sqrt{15}$
- C) $\sqrt{21}$
- D) 5

4

If A_0 is the initial amount deposited into a savings account that earns at a fixed rate of r percent per year, and a constant amount of 12b is added to the account each year, then amount A_n of the savings n years after the initial deposit is made

is given by the equation $A_n = (1 + \frac{r}{100}) \cdot A_{n-1} + 12b$.

What is A_3 , the amount you have in the savings three years after you made the initial deposit, if r = 5, $A_0 = 12,000$, and b = 400?

- A) \$23,070.00
- B) \$26,048.00
- C) \$29,023.50
- D) \$35,274.68

5

The number of gallons, P_n , of a pollutant in a lake at the end of each month is given by the recursively defined formula $P_n = 0.85P_{n-1} + 20$. If the initial amount P_0 of a pollutant in the lake is 400 gallons, what is P_3 , the amount of pollutant in the lake at the end of the third month, to the nearest gallon?

- A) 297
- B) 285
- C) 273
- D) 262