Exercises - Recursive Formula

1
A sequence is recursively defined by $a_{n}=\sqrt{\left(a_{n-1}\right)^{2}+2}$. If $a_{0}=\sqrt{2}$, what is the value of a_{2} ?
A) $\sqrt{5}$
B) $\sqrt{6}$
C) $\sqrt{8}$
D) 3

2
A sequence is recursively defined by
$a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{g\left(a_{n}\right)}$. If $a_{0}=1, f(x)=x^{2}-3 x$,
and $g(x)=2 x-3$, what is the value of a_{2} ?
A) -3
B) $-\frac{1}{5}$
C) 2
D) $\frac{3}{2}$

3

If $f(x)=\sqrt{2 x^{2}-1}$, what is the value of $f \circ f \circ f(2)$?
A) $\sqrt{10}$
B) $\sqrt{15}$
C) $\sqrt{21}$
D) 5

4

If A_{0} is the initial amount deposited into a savings account that earns at a fixed rate of r percent per year, and a constant amount of $12 b$ is added to the account each year, then amount A_{n} of the savings n years after the initial deposit is made is given by the equation $A_{n}=\left(1+\frac{r}{100}\right) \cdot A_{n-1}+12 b$.
What is A_{3}, the amount you have in the savings three years after you made the initial deposit, if $r=5, A_{0}=12,000$, and $b=400$?
A) $\$ 23,070.00$
B) $\$ 26,048.00$
C) $\$ 29,023.50$
D) $\$ 35,274.68$

5
The number of gallons, P_{n}, of a pollutant in a lake at the end of each month is given by the recursively defined formula $P_{n}=0.85 P_{n-1}+20$. If the initial amount P_{0} of a pollutant in the lake is 400 gallons, what is P_{3}, the amount of pollutant in the lake at the end of the third month, to the nearest gallon?
A) 297
B) 285
C) 273
D) 262

