Answer Key

Section 11-1

1. D
2. A
3. $\frac{9}{16}$
4. 2
5. $\frac{4}{3}$

Section 11-2

1. C
2. B
3. A
4. A
5. C
6. D

Section 11-3

1. A
2. D
3. B
4. D
5. C
6. B

Section 11-4

1. D
2. A
3. C
4. D
5. 11
6. $\frac{9}{16}$

Section 11-5

1. C
2. A
3. D
4. D
5. B
6. C

Section 11-6

1. C
2. B
3. C
4. D

Chapter 11 Practice Test

1. B
2. C
3. A
4. A
5. C
6. A
7. B
8. B

Answers and Explanations

Section 11-1

1. D

Change the given equation into the vertex form $y=a(x-h)^{2}+k$, in which (h, k) is the vertex of the parabola, by completing the square.

$$
\begin{aligned}
y & =x^{2}-6 x+5 \\
& =x^{2}-6 x+\left(\frac{-6}{2}\right)^{2}-\left(\frac{-6}{2}\right)^{2}+5 \\
& =\left(x^{2}-6 x+9\right)-9+5 \\
& =(x-3)^{2}-4
\end{aligned}
$$

The coordinate of the vertex can be read as $(3,-4)$.
2. A

Change the given equation into the factored form $y=(x-a)(x-b)$, in which $x=a$ and $x=b$ are the x-intercepts of the parabola. Find two numbers with a sum of -6 and a product of 5 . The two numbers are -1 and -5 .
$y=x^{2}-6 x+5$ can be written in the factored form
$y=(x-1)(x-5)$. The x-intercepts are 1 and 5 .
3. $\frac{9}{16}$

$$
\begin{aligned}
& y=a(x-h)^{2} \\
& 0=a(4-h)^{2} \quad x \text { - intercept at }(4,0)
\end{aligned}
$$

Since $a \neq 0,4-h=0$, or $h=4$.
The graph of the parabola passes through $(0,9)$, since the y-intercept of the parabola is 9 .

$$
\begin{array}{ll}
9=a(0-h)^{2} & \\
9=a h^{2} & \\
9=a(4)^{2} & \\
\frac{9}{16}=a & \\
\text { Simplify. } \\
\text { Substitute } 4 \text { for } h . \\
&
\end{array}
$$

4. 2

$$
\begin{aligned}
& y=a(x+2)^{2}-15 \\
& 3=a(1+2)^{2}-15 \quad x=1 \text { and } y=3 \\
& 3=9 a-15 \\
& 18=9 a \\
& 2=a
\end{aligned}
$$

5. $\frac{4}{3}$

The x-intercepts of the graph of the equation $y=a(x-1)(x+5)$ are -5 and 1 . The x-coordinate of the vertex is the average of the two x-intercepts. Therefore, $h=\frac{-5+1}{2}=-2$. The value of k is -12 because the minimum value of y is -12 . So the coordinate of the vertex is $(-2,-12)$. Substitute
$x=-2$ and $y=-12$ in the given equation.
$-12=a(-2-1)(-2+5)$
$-12=-9 a$
$\frac{12}{9}=a$ or $a=\frac{4}{3}$

Section 11-2

1. C

$$
x^{2}-2 x-24
$$

Find two numbers with a sum of -2 and a product of -24 . The two numbers are -6 and 4 .
Therefore, $x^{2}-2 x-24=(x-6)(x+4)$.
2. B

$$
x^{2}-17 x+72
$$

Find two numbers with a sum of -17 and a product of 72 . The two numbers are -8 and -9 .
Therefore, $x^{2}-17 x+72=(x-8)(x-9)$.
3. A

$$
-x^{2}+5 x+84=-\left(x^{2}-5 x-84\right)
$$

Find two numbers with a sum of -5 and a product of -84 . The two numbers are -12 and 7 .

$$
\begin{aligned}
& -x^{2}+5 x+84=-\left(x^{2}-5 x-84\right) \\
& =-(x-12)(x+7)=(12-x)(x+7)
\end{aligned}
$$

4. A

$$
3 x^{2}+7 x-6
$$

Find two numbers with a sum of 7 and a product of $3 \cdot-6$ or -18 . The two numbers are -2 and 9 .

$$
3 x^{2}+7 x-6
$$

$=3 x^{2}-2 x+9 x-6 \quad$ Write $7 x$ as $-2 x+9 x$.
$=\left(3 x^{2}-2 x\right)+(9 x-6) \quad$ Group terms.
$=x(3 x-2)+3(3 x-2) \quad$ Factor out the GCF.
$=(3 x-2)(x+3) \quad$ Distributive Property
5. C

$$
2 x^{2}+x-15
$$

Find two numbers with a sum of 1 and a product of $2 \cdot-15$ or -30 . The two numbers are -5 and 6.

$$
\begin{array}{ll}
2 x^{2}+x-15 & \\
=2 x^{2}-5 x+6 x-15 & \\
=\left(2 x^{2}-5 x\right)+(6 x-15) & \\
=x(2 x-5)+3(2 x-5) & \\
=(2 x-5)(x+3) & \\
\text { Froup terms } x \\
=5 x+6 x . \\
\text { Distributive Property }
\end{array}
$$

6. D

$$
-6 x^{2}+x+2=-\left(6 x^{2}-x-2\right)
$$

Find two numbers with a sum of -1 and a product of $6 \cdot-2$ or -12 . The two numbers are -4 and 3 .

$$
\begin{array}{rlr}
& -6 x^{2}+x+2 & \\
= & -\left(6 x^{2}-x-2\right) & \\
= & -\left(6 x^{2}-4 x+3 x-2\right) & \text { Write }-x \text { as }-4 x+3 x . \\
= & -\left[\left(6 x^{2}-4 x\right)+(3 x-2)\right] & \\
= & \text { Group terms. } \\
= & -[2 x(3 x-2)+(3 x-2)] & \\
\text { Factor out the GCF. } \\
& -(2 x+1) & \text { Distributive Property }
\end{array}
$$

Section 11-3

1. A

$$
\begin{array}{ll}
3 x^{2}-48 & \\
=3\left(x^{2}-16\right) & \text { Factor out the GCF } \\
=3\left((x)^{2}-(4)^{2}\right) & \text { Write in the form } a^{2}-b^{2} \\
=3(x-4)(x+4) & \text { Difference of Squares }
\end{array}
$$

2. D

$$
x-6 \sqrt{x}-16
$$

Let $y=\sqrt{x}$, then $y^{2}=x$.

$$
\begin{array}{ll}
x-6 \sqrt{x}-16 & \\
=y^{2}-6 y-16 & y=\sqrt{x} \text { and } y^{2}=x \\
=(y-8)(y+2) & \\
=(\sqrt{x}-8)(\sqrt{x}+2) & y=\sqrt{x} \text { and } y^{2}=x
\end{array}
$$

3. B

$$
\begin{aligned}
& (x-y)^{2} \\
& =(x-y)(x-y) \\
& =x^{2}-2 x y+y^{2} \\
& =\left(x^{2}+y^{2}\right)-2 x y \\
& =10-2(-3)=16 \quad x^{2}+y^{2}=10 \text { and } x y=-3
\end{aligned}
$$

4. D

$$
\begin{aligned}
& x^{2}-y^{2} \\
& =(x+y)(x-y) \\
& =(10)(4) \\
& =40
\end{aligned}
$$

5. C
$6 x^{2}+7 x-24=0$
$(3 x+8)(2 x-3)=0 \quad$ Factor.
$3 x+8=0$ or $2 x-3=0 \quad$ Zero Product Property
$x=-\frac{8}{3}$ or $x=\frac{3}{2}$
Solve each equation.
Since $\frac{3}{2}>-\frac{8}{3}, r=\frac{3}{2}$ and $s=-\frac{8}{3}$.
$r-s=\frac{3}{2}-\left(-\frac{8}{3}\right)=\frac{9}{6}+\frac{16}{6}=\frac{25}{6}$
6. B

$$
\begin{array}{ll}
x^{2}-3 x=28 & \\
x^{2}-3 x-28=0 & \text { Make one side } 0 . \\
(x-7)(x+4)=0 & \text { Factor. } \\
x-7=0 \text { or } x+4=0 & \text { Zero Product Property } \\
x=7 \text { or } x=-4 & \text { Solve each equation. }
\end{array}
$$

Therefore, $r+s=7+(-4)=3$.

Section 11-4

1. D

$$
x^{2}-10 x=75
$$

Add $\left(\frac{-10}{2}\right)^{2}$ to each side.
$x^{2}-10 x+\left(-\frac{10}{2}\right)^{2}=75+\left(-\frac{10}{2}\right)^{2}$
$x^{2}-10 x+25=75+25 \quad$ Simplify .
$(x-5)^{2}=100$
Factor $x^{2}-10 x+25$.
$x-5= \pm 10$
$x=5 \pm 10$
$x=5+10$ or $x=5-10$
$x=15$ or $x=-5$
Take the square root.
Add 5 to each side.
Separate the solutions. Simplify.

If $x<0, x=-5$. Therefore, $x+5=-5+5=0$.
2. A
$x^{2}-k x=20$
Add $\left(\frac{-k}{2}\right)^{2}$ to each side.
$x^{2}-k x+\left(\frac{-k}{2}\right)^{2}=20+\left(\frac{-k}{2}\right)^{2}$
$x^{2}-k x+\frac{k^{2}}{4}=20+\frac{k^{2}}{4} \quad$ Simplify.
$\left(x-\frac{k}{2}\right)^{2}=20+\frac{k^{2}}{4} \quad$ Factor $x^{2}-k x+\frac{k^{2}}{4}$.
$(6)^{2}=20+\frac{k^{2}}{4} \quad$ Substitute 6 for $x-\frac{k}{2}$.
$16=\frac{k^{2}}{4}$
Solving for k gives $k= \pm 8$.
Solving the given equation $x-\frac{k}{2}=6$ for x gives $x=6+\frac{k}{2}$.

If $k=8, x=6+\frac{k}{2}=6+\frac{8}{2}=10$.
If $k=-8, x=6+\frac{k}{2}=6+\frac{-8}{2}=2$.
Of the answer choices, 2 is a possible value of x. Therefore, Choice A is correct.
3. C
$x^{2}-\frac{k}{3} x=5$
The equation could be solved by completing the square by adding $\left(\frac{1}{2} \cdot \frac{k}{3}\right)^{2}$, or $\frac{k^{2}}{36}$, to each side.
Choice C is correct.
4. D
$x^{2}-r x=\frac{k^{2}}{4}$
Add $\left(\frac{-r}{2}\right)^{2}$, or $\frac{r^{2}}{4}$, to each side.
$x^{2}-r x+\frac{r^{2}}{4}=\frac{k^{2}}{4}+\frac{r^{2}}{4}$
$\left(x-\frac{r}{2}\right)^{2}=\frac{k^{2}+r^{2}}{4} \quad$ Factor $x^{2}-r x+\frac{r^{2}}{4}$.
$x-\frac{r}{2}= \pm \sqrt{\frac{k^{2}+r^{2}}{4}}$
Take the square root.
$x-\frac{r}{2}= \pm \frac{\sqrt{k^{2}+r^{2}}}{2} \quad$ Simplify.
$x=\frac{r}{2} \pm \frac{\sqrt{k^{2}+r^{2}}}{2} \quad$ Add $\frac{r}{2}$ to each side.
Choice D is correct.
5. 11

$$
\begin{aligned}
& (x-7)(x-s)=x^{2}-r x+14 \\
& x^{2}-(s+7) x+7 s=x^{2}-r x+14
\end{aligned}
$$

Since the x-terms and constant terms have to be equal on both sides of the equation,
$r=s+7$ and $7 s=14$.
Solving for s gives $s=2$.
$r=s+7=2+7=9$
Therefore, $r+s=9+2=11$.
6. $\frac{9}{16}$

$$
\begin{aligned}
& x^{2}-\frac{3}{2} x+c=(x-k)^{2} \Rightarrow \\
& x^{2}-\frac{3}{2} x+c=x^{2}-2 k x+k^{2}
\end{aligned}
$$

Since the x-terms and constant terms have to be equal on both sides of the equation,
$2 k=\frac{3}{2}$ and $c=k^{2}$.
Solving for k gives $k=\frac{3}{4}$.
Therefore, $c=k^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$.

Section 11-5

1. C
$(p-1) x^{2}-2 x-(p+1)=0$
Use the quadratic formula to find the solutions for x.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(p-1)(-(p+1))}}{2(p-1)} \\
& =\frac{2 \pm \sqrt{4+4(p-1)(p+1)}}{2(p-1)} \\
& =\frac{2 \pm \sqrt{4+4 p^{2}-4}}{2(p-1)} \\
& =\frac{2 \pm \sqrt{4 p^{2}}}{2(p-1)}=\frac{2 \pm 2 p}{2(p-1)} \\
& =\frac{2(1 \pm p)}{2(p-1)}=\frac{1 \pm p}{p-1}
\end{aligned}
$$

The solutions are $\frac{1+p}{p-1}$ and $\frac{1-p}{p-1}$, or -1 .
Choice C is correct.
2. A

Let r_{1} and r_{2} be the solutions of the quadratic
equation $3 x^{2}+12 x-29=0$.
Use the sum of roots formula.

$$
r_{1}+r_{2}=-\frac{b}{a}=-\frac{12}{3}=-4
$$

3. D

$$
k x^{2}+6 x+4=0
$$

If the quadratic equation has exactly one solution, then $b^{2}-4 a c=0$.

$$
\begin{aligned}
& b^{2}-4 a c=6^{2}-4(k)(4)=0 \Rightarrow 36-16 k=0 \\
& \Rightarrow k=\frac{36}{16}=\frac{9}{4}
\end{aligned}
$$

4. D
$y=b x-3$ and $y=a x^{2}-7 x$
Substitute $b x-3$ for y in the quadratic equation.

$$
\begin{aligned}
& b x-3=a x^{2}-7 x \\
& a x^{2}+(-7-b) x+3=0 \quad \text { Make one side } 0
\end{aligned}
$$

The system of equations will have exactly two real solutions if the discriminant of the quadratic equation is positive.
$(-7-b)^{2}-4 a(3)>0$, or $(7+b)^{2}-12 a>0$.
We need to check each answer choice to find out for which values of a and b the system of equations has exactly two real solutions.
A) If $a=3$ and $b=-2,(7-2)^{2}-12(3)<0$.
B) If $a=5$ and $b=0,(7+0)^{2}-12(5)<0$.
C) If $a=7$ and $b=2,(7+2)^{2}-12(7)<0$.
D) If $a=9$ and $b=4,(7+4)^{2}-12(9)>0$.

Choice Dis correct.
5. B
$x^{2}+4=-6 x$
$x^{2}+6 x-4=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-6 \pm \sqrt{6^{2}-4(1)(4)}}{2(1)}$
$=\frac{-6 \pm \sqrt{20}}{2}=\frac{-6 \pm 2 \sqrt{5}}{2}$
$=-3 \pm \sqrt{5}$

6. C

If the quadratic equation has no real solution, the discriminant, $b^{2}-4 a c$, must be negative. Check each answer choice.
A) $5 x^{2}-10 x=6 \Rightarrow 5 x^{2}-10 x-6=0$ $b^{2}-4 a c=(-10)^{2}-4(5)(-6)>0$
B) $4 x^{2}+8 x+4=0$ $b^{2}-4 a c=(8)^{2}-4(4)(4)=0$
C) $3 x^{2}-5 x=-3 \Rightarrow 3 x^{2}-5 x+3=0$ $b^{2}-4 a c=(-5)^{2}-4(3)(3)<0$

Choice C is correct.

Section 11-6

1. C

Since the two x-intercepts are -4 and 2 , the equation of the parabola can be written as $y=a(x+4)(x-2)$. Substitute $x=0$ and $y=\frac{16}{3}$ in the equation, since the graph of the parabola passes through $\left(0, \frac{16}{3}\right)$.
$\frac{16}{3}=a(0+4)(0-2)$
Solving the equation for a gives $a=-\frac{2}{3}$.
Thus the equation of the parabola is
$y=-\frac{2}{3}(x+4)(x-2)$.
The x-coordinate of the vertex is the average of the two x-intercepts: $\frac{-4+2}{2}$, or -1 .
The y-coordinate of the vertex can be found by substituting -1 for x in the equation of the parabola: $y=-\frac{2}{3}(-1+4)(-1-2)=6$.
The line passes through $(2,0)$ and $(-1,6)$.
The slope of the line is $\frac{6-0}{-1-2}=-2$. The equation of the line in point-slope form is $y-0=-2(x-2)$. To find the y-intercept of the line, substitute 0 for $x . y=-2(0-2)=4$

Choice C is correct.
2. B
$y=x^{2}+x$ and $y=a x-1$
Substitute $a x-1$ for y in the quadratic equation.

$$
a x-1=x^{2}+x
$$

$x^{2}+(-a+1) x+1=0 \quad$ Make one side 0.
If the system of equations has exactly one real solution, the discriminant $b^{2}-4 a c$ must be equal to 0 .

$$
\begin{array}{ll}
(-a+1)^{2}-4(1)(1)=0 & b^{2}-4 a c=0 \\
a^{2}-2 a+1-4=0 & \text { Simplify. } \\
a^{2}-2 a-3=0 & \text { Simplify. } \\
(a-3)(a+1)=0 & \text { Factor. } \\
a=3 \text { or } a=-1 & \text { Solutions }
\end{array}
$$

Since $a>0, a=3$.
3. C

One can find the intersection points of the two graphs by setting the two functions $f(x)$ and $g(x)$ equal to one another and then solving for x. This yields $2 x^{2}+2=-2 x^{2}+18$. Adding $2 x^{2}-2$ to each side of the equation gives $4 x^{2}=16$. Solving for x gives $x= \pm 2$.
$f(2)=2(2)^{2}+2=10$ and also $f(-2)=10$.
The two point of intersections are $(2,10)$ and $(-2,10)$. Therefore, the value of b is 10 .
4. D
$x^{2}+y^{2}=14 \quad$ First equation
$x^{2}-y=2 \quad$ Second equation
$x^{2}=y+2 \quad$ Second equation solved for x^{2}.
$y+2+y^{2}=14 \quad$ Substitute $y+2$ for x^{2} in first equation.
$y^{2}+y-12=0 \quad$ Make one side 0.
$(y+4)(y-3)=0 \quad$ Factor.
$y=-4$ or $y=3 \quad$ Solve for y.
Substitute -4 and 3 for y and solve for x^{2}.
$x^{2}=y+2=-4+2=-2$.
Since x^{2} cannot be negative, $y=-4$ is not
a solution.
$x^{2}=y+2=3+2=5$
The value of x^{2} is 5 .

Chapter 11 Practice Test

1. B

The x-coordinate of the vertex is the average of the x-intercepts. Thus the x-coordinate of the vertex is $x=\frac{-2+6}{2}=2$. The vertex form of the parabola can be written as $y=a(x-2)^{2}+k$. Choices A and D are incorrect because the x-coordinate of the vertex is not 2 .
Also, the parabola passes through $(0,6)$.
Check choices B and C.
B) $y=-\frac{1}{2}(x-2)^{2}+8$

$$
6=-\frac{1}{2}(0-2)^{2}+8 \quad \text { Correct. }
$$

C) $y=-\frac{1}{2}(x-2)^{2}+9$ $6=-\frac{1}{2}(0-2)^{2}+9 \quad$ Not correct.

Choice B is correct.
2. C
$(x+y)^{2}=324 \Rightarrow x^{2}+2 x y+y^{2}=324$
$x^{2}+y^{2}=324-2 x y$
$(x-y)^{2}=16 \Rightarrow x^{2}-2 x y+y^{2}=16$
$\Rightarrow x^{2}+y^{2}=16+2 x y$
Substituting $16+2 x y$ for $x^{2}+y^{2}$ in the equation
$x^{2}+y^{2}=324-2 x y$ yields
$16+2 x y=324-2 x y$.
Solving this equation for $x y$ yields $x y=77$.
3. A

From the graph we read the length of $A D$, which is 9. Let the length of $C D=w$.
Perimeter of rectangle $A B C D$ is 38 .
$2 \cdot 9+2 w=38 \Rightarrow 2 w=20 \Rightarrow w=10$
Therefore, the coordinates of B are $(-1,10)$
and the coordinates of C are $(8,10)$.
The equation of the parabola can be written in vertex form as $y=a(x-3)^{2}$.
Now substitute 8 for x and 10 for y in the equation. $10=a(8-3)^{2}$. Solving for a gives $a=\frac{10}{25}=\frac{2}{5}$. Choice A is correct.
4. A

$$
(a x+b)(2 x-5)=12 x^{2}+k x-10
$$

FOIL the left side of the equation.
$2 a x^{2}+(-5 a+2 b) x-5 b=12 x^{2}+k x-10$
By the definition of equal polynomials, $2 a=12$, $-5 a+2 b=k$, and $5 b=10$. Thus, $a=6$ and $b=2$, and $k=-5 a+2 b=-5(6)+2(2)=-26$.
5. D
$h=-\frac{1}{2} g t^{2}+v_{0} t+h_{0}$
In the equation, $g=9.8$, initial height $h_{0}=40$, and initial speed $v_{0}=35$. Therefore, the equation of the motion is $h=-\frac{1}{2}(9.8) t^{2}+35 t+40$.
Choice D is correct.
6. C

In the quadratic equation, $y=a x^{2}+b x+c$, the x-coordinate of the maximum or minimum point is at $x=-\frac{b}{2 a}$.
Therefore, the object reaches its maximum height when $t=-\frac{35}{2(-4.9)}=\frac{25}{7}$.
7. A

The object reaches to its maximum height when $t=\frac{25}{7}$. So substitute $t=\frac{25}{7}$ in the equation.
$h=-4.9\left(\frac{25}{7}\right)^{2}+35\left(\frac{25}{7}\right)+40=102.5$
To the nearest meter, the object reaches a maximum height of 103 meters.
8. B

Height of the object is zero when the object hits the ground.

$$
0=-4.9 t^{2}+35 t+40
$$

Use quadratic formula to solve for t.

$$
\begin{aligned}
& t=\frac{-35 \pm \sqrt{35^{2}-4(-4.9)(40)}}{2(-4.9)} \\
& =\frac{-35 \pm \sqrt{2009}}{-9.8} \approx \frac{-35 \pm 44.82}{-9.8}
\end{aligned}
$$

Solving for t gives $t \approx-1$ or $t \approx 8.1$.
Since time cannot be negative, the object hits the ground about 8 seconds after it was thrown.
9. B

When an object hits the ground, $h=0$.
$h_{0}=150$ is given.

$$
\begin{array}{ll}
0=-16 t^{2}+150 & \text { Substitution } \\
16 t^{2}=150 & \text { Add } 16 t^{2} \text { to each side. } \\
t^{2}=\frac{150}{16} & \text { Divide each side by } 16 . \\
t=\sqrt{\frac{150}{16}} \approx 3.06 &
\end{array}
$$

