Answer Key

Section 3-1

1. D
2. B
3. B
4. A
5. C
6. 8
7. 12

Section 3-2

1. A
2. C
3. D
4. $\frac{5}{2}$ or 2.5
5. 12
6. $\frac{29}{2}$ or 14.5
7. $\frac{1}{4}$ or 0.25

Section 3-3

1. C
2. B
3. D
4. B
5. D

Section 3-4

1. B
2. D
3. C
4. 14
5. $\frac{3}{2}$ or 1.5
6. 3

Section 3-5

1. B
2. B
3. $\frac{4}{5}$ or 0.8
4. C
5.1
5. $\frac{4}{3}$ or 1.33

Section 3-6

1. D
2. A
3. A
4. D
5. C
6. 3

Chapter 3 Practice Test

1. C	2. B	3. C	4. C	5. B
6. A	7. B	8. C	9.D	10.3
11.2	12.6			

Answers and Explanations

Section 3-1

1. D

The domain of a function is the set of all x-coordinates. Therefore, $\{-5,-2,0,4\}$ is the domain of the given function.
2. B

The ordered pairs $\{(-5,8),(-2,7),(2,-1),(5,8)\}$ is a correct representation of the mapping shown.
3. B

If point $(7, b)$ is in Quadrant I, b is positive.
If point $(a,-3)$ is in Quadrant III, a is negative.
Therefore, point (a, b) is in Quadrant II.
4. A
$f(x)=-2 x+7$
To find $f\left(\frac{1}{2} x+3\right)$, substitute $\frac{1}{2} x+3$ for x, in the given function.
$f\left(\frac{1}{2} x+3\right)=-2\left(\frac{1}{2} x+3\right)+7$
$=-x-6+7=-x+1$
5. C

$$
\begin{array}{ll}
g(x)=k x^{3}+3 & \\
g(-1)=k(-1)^{3}+3=5 & g(-1)=5 \\
-k+3=5 & \text { Simplify. } \\
k=-2 & \text { Solve for } k .
\end{array}
$$

Substitute -2 for k in the given function.
$g(x)=k x^{3}+3=-2 x^{3}+3$
$g(1)=-2(1)^{3}+3=1$
6. 8
$f(x+1)=-\frac{1}{2} x+6$
To find $f(-3)$, first solve $x+1=-3$.
$x+1=-3 \Rightarrow x=-4$.
Substitute -4 for x in the given function.
$f(-3)=-\frac{1}{2}(-4)+6=8$.
7. 12
$f(x)=x^{2}-b$
$f(-2)=7 \Rightarrow(-2)^{2}-b=7$
$\Rightarrow 4-b=7 \Rightarrow b=-3$
Therefore, $f(x)=x^{2}+3$.
$f(b)=f(-3)=(-3)^{2}+3=12$

Section 3-2

1. A

Rate of change $=\frac{\text { change in } y}{\text { change in } x}=\frac{-1-3}{0-(-3)}=\frac{-4}{3}$
2. C

Pick any two points from the table.
Let's pick $(-3,-1)$ and $(6,5)$.
Average rate of change $=\frac{\text { change in } y}{\text { change in } x}$

$$
=\frac{5-(-1)}{6-(-3)}=\frac{6}{9}=\frac{2}{3}
$$

3. D
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{b-1}{1-a}=1$
$\Rightarrow b-1=1-a \Rightarrow a+b=2$
4. $\frac{5}{2}$ or 2.5
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-8-2}{-1-3}=\frac{-10}{-4}=\frac{5}{2}$
5. 12
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{r-3}{-5-4}=\frac{r-3}{-9}=-1$
$\Rightarrow r-3=9 \Rightarrow r=12$
6. $\frac{29}{2}$ or 14.5

$$
\begin{aligned}
& \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{a-7}{1-a}=-\frac{5}{9} \\
& \Rightarrow 9(a-7)=-5(1-a) \\
& \Rightarrow 9 a-63=-5+5 a \\
& \Rightarrow 4 a=58 \Rightarrow a=\frac{58}{4}=\frac{29}{2}
\end{aligned}
$$

7. $\frac{1}{4}$ or 0.25

$$
-x+4 y=6
$$

Write the equation in slope-intercept form.

$$
-x+4 y=6 \Rightarrow 4 y=x+6 \Rightarrow y=\frac{x}{4}+\frac{6}{4}
$$

The slope of the line is $\frac{1}{4}$.

Section 3-3

1. C
. Since the points $(-4,2)$ and $(4,-4)$ lie on the line, the slope of the line is $\frac{2-(-4)}{-4-4}=\frac{6}{-8}=-\frac{3}{4}$.
If we use the point $(4,-4)$ and the slope $m=-\frac{3}{4}$, the point-slope form of the line is
$y-(-4)=-\frac{3}{4}(x-4)$ or $y+4=-\frac{3}{4}(x-4)$.
If we use the point $(-4,2)$ and the slope $m=-\frac{3}{4}$, the point-slope form of the line is $y-2=-\frac{3}{4}(x-(-4))$ or $y-2=-\frac{3}{4}(x+4)$.

Choice C is correct.
2. B

$$
\begin{array}{ll}
y-2=-\frac{3}{4}(x+4) & \text { Point-slope form of the line. } \\
y-2=-\frac{3}{4} x-3 & \text { Distributive Property } \\
y=-\frac{3}{4} x-1 & \text { Add } 2 \text { to each side and simplify. }
\end{array}
$$

3. D

$$
\begin{array}{ll}
y=-\frac{3}{4} x-1 & \text { Slope-intercept form } \\
4 y=4\left(-\frac{3}{4} x-1\right) & \text { Multiply each side by } 4 \\
4 y=-3 x-4 & \text { Simplify. } \\
4 y+3 x=-3 x-4+3 x & \text { Add } 3 x \text { to each side. } \\
3 x+4 y=-4 & \text { Simplify }
\end{array}
$$

4. B

Average rate of change
$=\frac{\text { change in number of smart phones }}{\text { change in years }}$
$=\frac{345-120}{2010-2005}=\frac{225}{5}=45$
The increase in the average number of smart phones is 45 each year.

5. D

Since the line passes through point $(4,-1)$ and has slope -2 , the point-slope form of the line is $y-(-1)=-2(x-4)$.

$$
\begin{array}{ll}
y+1=-2(x-4) & \text { Point-slope form simplified. } \\
y+1=-2 x+8 & \text { Distributive Property } \\
2 x+y=7 & 2 x-1 \text { is added to each side. }
\end{array}
$$

Section 3-4

1. B

Lines that are parallel have the same slope.
So, we need to find the equation of a line with the slope $-\frac{1}{2}$ and the point $\left(-2, \frac{1}{2}\right)$.
The point-slope form of this line is
$y-\frac{1}{2}=-\frac{1}{2}(x-(-2))$.
$y-\frac{1}{2}=-\frac{1}{2} x-1 \quad$ Simplified.
$2\left(y-\frac{1}{2}\right)=2\left(-\frac{1}{2} x-1\right)$ Multiply each side by 2 .
$2 y-1=-x-2 \quad$ Simplify.
$x+2 y=-1 \quad x+1$ is added to each side.
2. D

A line parallel to the x-axis has slope 0 .
$y-y_{1}=m\left(x-x_{1}\right) \quad$ Point-slope form
$y-6=0(x-7) \quad m=0, x_{1}=7$, and $y_{1}=6$
$y-6=0 \quad$ Simplify.
$y=6$
3. C

If a line is parallel to the y-axis, it is a vertical line and the equation is given in the form $x=a$, in which a is the x-coordinate of the point the line passes through. Therefore, the equation of the vertical line that passes through $(-5,1)$ is $x=-5$.
4. 14
$4 x-2 y=13$ can be rewritten as $y=2 x-\frac{13}{2}$.
The line has slope 2 . Lines that are parallel have the same slope. Therefore, $2=\frac{b-2}{5+1}$.
Solving the equation for b gives $b=14$.
5. $\frac{3}{2}$ or 1.5

Since lines ℓ and m are parallel, the two lines have the same slope. Therefore,
$\frac{0-3}{2-0}=\frac{-3-b}{-1-(-4)}$.
$\frac{-3}{2}=\frac{-3-b}{3} \quad$ Simplified.
$-9=-6-2 b \quad$ Cross Multiplication
$-3=-2 b \quad$ Add 6 to each side.
$\frac{3}{2}=b \quad$ Divide each side by -2 .
6. 3

The slope of line t is $\frac{1-(-3)}{2-(-4)}$, or $\frac{2}{3}$. So, the slope of the line perpendicular to line t is the negative reciprocal of $\frac{2}{3}$, or $-\frac{3}{2}$. Therefore,

$$
\begin{aligned}
& -\frac{3}{2}=\frac{-2-4}{a+1} \Rightarrow-3(a+1)=2(-6) \\
& \Rightarrow-3 a-3=-12 \\
& \Rightarrow-3 a=-9 \Rightarrow a=3
\end{aligned}
$$

Section 3-5

1. B

$$
\begin{array}{ll}
y=2 x+4 & \text { First equation } \\
x-y=-1 & \text { Second equatic }
\end{array}
$$

Substituting $2 x+4$ for y in the second equation gives $x-(2 x+4)=-1$.
$x-(2 x+4)=-1 \Rightarrow x-2 x-4=-1$
$\Rightarrow-x-4=-1 \Rightarrow-x=3$ or $x=-3$
Substituting -3 for x in the first equation gives $y=2(-3)+4=-2$. Therefore, the solution (x, y) to the given system of equations is $(-3,-2)$.
2. B

$$
\begin{array}{ll}
\frac{1}{2} x+y=1 & \text { First equation } \\
\frac{-2 x-y=5}{3} & \text { Second equation } \\
-\frac{3}{2} x=6 & \text { Add the equations. } \\
-\frac{2}{3}\left(-\frac{3}{2} x\right)=-\frac{2}{3}(6) & \\
\text { Multiply each side by }-\frac{2}{3}
\end{array}
$$

$x=-4$	Simplify.
$\frac{1}{2}(-4)+y=1$	Substitute -4 for x in the first equation.
$-2+y=1$	Simplify.
$y=3$	Add 2 to each side.

Therefore, $x+y=-4+3=-1$
3. $\frac{4}{5}$

If a system of two linear equations has no solution, then the lines represented by the equations in the coordinate plane are parallel. So, the slopes of the line are equal.
$2 x-k y=14 \quad 1$ st equation
$y=\frac{2}{k} x-\frac{14}{k} \quad 1$ st equation in slope-intercept form
$5 x-2 y=5 \quad 2 n d$ equation
$y=\frac{5}{2} x-\frac{5}{2} \quad$ 2nd equation in slope-intercept form
The system of equations will have no solution if $\frac{2}{k}=\frac{5}{2}$. Solving for k yields $k=\frac{4}{5}$.
If $k=\frac{4}{5}$, the y-intercept of the first equation is $-\frac{35}{2}$, and the y-intercept of the second equation is $-\frac{5}{2}$. Therefore, the lines are parallel, but not identical.
4. C

In order for a system of two linear equations to have infinitely many solutions, the two equations must be equivalent. The two equations in the answer choice A have different slopes. The two equations in the answer choice B have different y-intercepts. For answer choice C , multiply by 6 on each side of the first equation.
$6\left(\frac{1}{2} x-\frac{1}{3} y\right)=6(1) \Rightarrow 3 x-2 y=6$.
The result is identical to the second equation. Therefore, the two equations are equivalent. The two equations in answer choice D have different slopes,
5. 1

Change the two equations into slope-intercept form.
$a x-y=0 \Rightarrow y=a x$
$x-b y=1 \Rightarrow y=\frac{1}{b} x-\frac{1}{b}$
If $a=\frac{1}{b}$, the system of equations will have no solution. Therefore, $a \cdot b=1$
6. $\frac{4}{3}$

In order for a system of two linear equations to have infinitely many solutions, the two equations must be equivalent. The equation $2 x-\frac{1}{2} y=15$ can be rewritten as $y=4 x-30$ and the equation
$a x-\frac{1}{3} y=10$ can be rewritten as $y=3 a x-30$.
If two equations are equivalent, then $4 x=3 a x$
or $a=\frac{4}{3}$.

Section 3-6

1. D

By definition, the absolute value of any expression is a nonnegative number. Therefore, $|1-x|+6>0$,
$|1-x|+4>0$, and $|1-x|+2>0$. Only $|1-x|-2$
could be a negative number.
$|1-x|-2=-1 \Rightarrow|1-x|=1 \Rightarrow x=2$ or $x=0$.
2. A
$|2 x+7|=5$
$2 x+7=5$ or $2 x+7=-5$
$2 x=-2 \quad$ or $\quad 2 x=-12$
$x=-1 \quad$ or $\quad x=-6$
3. A
$|x-1|-1=1$
$|x-1|=2 \quad$ Add 1 to each side.
$x-1=2$ or $x-1=-2$ The expression can be 2 or -2 .
$x=3$ or $x=-1 \quad$ Add 1 to each side.
4. D

The expression $|3 x-5|$ is the absolute value of $3 x-5$, and the absolute value can never be a negative number. Thus $|3 x-5|=-1$ has no solution
5. C

The maximum value of the function corresponds to the y-coordinate of the point on the graph, which is highest along the vertical axis. The highest point along the y-axis has coordinates $(1,4)$. Therefore, the value of x at the maximum of $f(x)$ is 1 .
6. 3
$3-|3-n|=3$
$-|3-n|=0 \quad$ Subtract 3 from each side.
If $-|3-n|=0$ or $|3-n|=0$, then $3-n=0$,
Thus $n=3$.

Chapter 3 Practice Test

1. C

Use the slope formula to find the slope of the function. Since $f(x)$ is a linear function, the slope between $(-4,-4)$ and $(0,-1)$ equals the slope between $(0,-1)$ and $(6, k)$.
Therefore, $\frac{-1-(-4)}{0-(-4)}=\frac{k-(-1)}{6-0}$.
$\frac{3}{4}=\frac{k+1}{6}$
Simplify.
$4(k+1)=18 \quad$ Cross Multiplication
$4 k+4=18 \quad$ Distributive Property
$4 k=14 \quad$ Subtract 4 from each side.
$k=\frac{7}{2}$ or $3.5 \quad$ Divide each side by 4 .
2. B

The equation of the line with slope $\frac{1}{3}$ and point $(9,1)$ is $y-1=\frac{1}{3}(x-9)$ or $y=\frac{1}{3} x-2$.
The slope of the second line is $\frac{-3-4}{5-(-2)}$ or -1 .
The equation of the second line is $y-4=-1(x+2)$ or $y=-x+2$. To find the point of intersection, substitute $\frac{1}{3} x-2$ for y in the second equation and solve for x.
$\frac{1}{3} x-2=-x+2$

Solving for x yields $x=3$. Substituting 3 for x in the equation of the second line yields $y=-1$.
Therefore, $(a, b)=(3,-1)$ and $a+b=3-1=2$.
3. C

The expressions $|x+5|$ or $|x-5|$ can never be a negative number. Thus $5+|x+5|$ or $5+|x-5|$ can not equal zero. The expression $-|x-5|$ can never be a positive number. Thus $-5-|x-5|$ can not equal zero. If $-5+|x+5|=0$, then $|x+5|=5$, when $x=0$.
4. C

If the slope of a line is positive, it is possible that the line contains no points from Quadrant II or from Quadrant IV. If the slope of a line is negative, it is possible that the line contains no points from Quadrant I or from Quadrant III. Since the line ℓ contains points from each of the Quadrants I, III, and IV, but no points from Quadrant II, the slope of line ℓ must be positive.
5. B

x	-3	-1	1	5
$f(x)$	9	5	1	-7

First, find the slope of the linear function f. We can choose any two points from the table. Let's use $(1,1)$ and $(-1,5)$ to find the slope m of $f . m=\frac{5-1}{-1-1}=\frac{4}{-2}=-2$. Thus the slope intercept form of f can be written as $f(x)=-2 x+b$. From the table we know $f(1)=1$. $f(1)=-2(1)+b=1$ implies $b=3$. Thus f is defined as $f(x)=-2 x+3$.
6. A

$$
\begin{array}{rlrl}
f(x)=-6 x+1 & & \\
\begin{aligned}
f\left(\frac{1}{2} x-1\right) & =-6\left(\frac{1}{2} x-1\right)+1 & & \text { Substitute } \frac{1}{2} x-1 \text { for } x . \\
& =-3 x+6+1 & & \text { Distributive Property } \\
& =-3 x+7 & & \text { Simplify. }
\end{aligned}
\end{array}
$$

7. B

Since the points $(0,3000)$ and $(4,2400)$ lie on the line, the slope of the line is $\frac{2400-3000}{4-0}=-150$.
The H-intercept of the line is 3,000 . Therefore the relationship between H and m can be represented by $H=-150 m+3000$, the slopeintercept form of the line.
8. C
$H=-150 m+3000 \quad$ Equation of the line $1350=-150 m+3000$ Substitute 1350 for H.

Solving for m yields $m=11$.
9. D

The point-slope form of the line that passes through the point $(1,-2)$ and has a slope of $\frac{1}{3}$ is $y+2=\frac{1}{3}(x-1)$. The slope-intercept form of the line is $y=\frac{1}{3} x-\frac{7}{3}$. We can replace $f(x)$ for y to get the function form. Thus, $f(x)=\frac{1}{3} x-\frac{7}{3}$.
Now check each answer choices.
A) $(3,-2)$
$f(3)=\frac{1}{3}(3)-\frac{7}{3}=-\frac{4}{3} \neq-2$
B) $\left(2,-\frac{4}{3}\right)$
$f(2)=\frac{1}{3}(2)-\frac{7}{3}=-\frac{5}{3} \neq-\frac{4}{3}$
C) $(0,-2)$
$f(0)=\frac{1}{3}(0)-\frac{7}{3}=-\frac{7}{3} \neq-2$
D) $\left(-1,-\frac{8}{3}\right)$
$f(-1)=\frac{1}{3}(-1)-\frac{7}{3}=-\frac{8}{3}$

Choice D is correct.
10.3
$f(x)=a x+2$
If $f(-1)=4$, then $f(-1)=a(-1)+2=4$.

Solving for a yields $a=-2$.
Thus $f(x)=-2 x+2$ and
$f\left(-\frac{1}{2}\right)=-2\left(-\frac{1}{2}\right)+2=3$.
11.2

Use the slope formula.
Slope $=\frac{k-(-4)}{6-2}=\frac{3}{2}$.
$\frac{k+4}{4}=\frac{3}{2}$
Simplify.
$2(k+4)=3 \cdot 4 \quad$ Cross Product
$2 k+8=12 \quad$ Distributive Property
Solving for k yields $k=2$.
12.6
$\frac{1}{3} x-\frac{3}{4} y=-11 \stackrel{\text { Multiply by } 3}{\Rightarrow} x-\frac{9}{4} y=-33$
$\frac{1}{2} x+\frac{1}{6} y=-1 \quad \stackrel{\text { Multiply by }-2}{\Rightarrow} \quad-x-\frac{1}{3} y=2$
Add the equations and we get $-\frac{9}{4} y-\frac{1}{3} y=-31$.
12(- $\left.\frac{9}{4} y-\frac{1}{3} y\right)=12(-31) \quad$ Multiply each side by 12 .
$-27 y-4 y=-372 \quad$ Distributive Property
$-31 y=-372 \quad$ Simplify.
$\frac{-31 y}{-31}=\frac{-372}{-31} \quad$ Divide each side by -31 .
$y=12 \quad$ Simplify.
$\frac{1}{3} x-\frac{3}{4} y=-11 \quad$ First equation
$\frac{1}{3} x-\frac{3}{4}(12)=-11 \quad y=12$
$\frac{1}{3} x-9=-11 \quad$ Simplify.
$\frac{1}{3} x-9+9=-11+9 \quad$ Add 9 to each side.
$\frac{1}{3} x=-2 \quad$ Simplify.
$3\left(\frac{1}{3} x\right)=3(-2) \quad$ Multiply each side by -2.
$x=-6 \quad$ Simplify.
Therefore, $x+y=-6+12=6$.

