Answer Key Section 3-1 1. D 2. B 3. B 4. A 5. C 6.8 7.12 Section 3-2 4. $\frac{5}{2}$ or 2.5 3. D 2. C 1. A 7. $\frac{1}{4}$ or 0.25 6. $\frac{29}{2}$ or 14.5 5.12 Section 3-3 1. C 2. B 3. D 4. B 5. D Section 3-4 5. $\frac{3}{2}$ or 1.5 1. B 2. D 3. C 4.14 6.3 Section 3-5 3. $\frac{4}{5}$ or 0.8 2. B 4. C 1. B 6. $\frac{4}{3}$ or 1.33 5.1 Section 3-6 1. D 2. A 3. A 4. D 5. C 6.3 Chapter 3 Practice Test 1. C 2. B 3. C 4. C 5. B 9. D 6. A 7. B 8. C 10.3 11.2 12.6

Answers and Explanations

Section 3-1

1. D

The domain of a function is the set of all x-coordinates. Therefore, $\{-5, -2, 0, 4\}$ is the domain of the given function.

2. B

The ordered pairs $\{(-5,8), (-2,7), (2,-1), (5,8)\}$ is a correct representation of the mapping shown.

3. B

If point (7,b) is in Quadrant I, *b* is positive. If point (a,-3) is in Quadrant III, *a* is negative. Therefore, point (a,b) is in Quadrant II.

4. A

$$f(x) = -2x + 7$$

To find $f(\frac{1}{2}x+3)$, substitute $\frac{1}{2}x+3$ for x, in
the given function.
$$f(\frac{1}{2}x+3) = -2(\frac{1}{2}x+3)+7$$
$$= -x-6+7 = -x+1$$

5. C

$g(x) = kx^3 + 3$	
$g(-1) = k(-1)^3 + 3 = 5$	g(-1) = 5
-k + 3 = 5	Simplify.
k = -2	Solve for k .

Substitute -2 for *k* in the given function. $g(x) = kx^{3} + 3 = -2x^{3} + 3$ $g(1) = -2(1)^{3} + 3 = 1$

6. 8

$$f(x+1) = -\frac{1}{2}x+6$$

To find $f(-3)$, first solve $x+1 = -3$.
 $x+1 = -3 \implies x = -4$.
Substitute -4 for x in the given function
 $f(-3) = -\frac{1}{2}(-4) + 6 = 8$.

7. 12

$$f(x) = x^{2} - b$$

$$f(-2) = 7 \implies (-2)^{2} - b = 7$$

$$\implies 4 - b = 7 \implies b = -3$$

Therefore, $f(x) = x^{2} + 3$.

$$f(b) = f(-3) = (-3)^{2} + 3 = 12$$

Section 3-2

1. A

Rate of change = $\frac{\text{change in } y}{\text{change in } x} = \frac{-1-3}{0-(-3)} = \frac{-4}{3}$

2. C

Pick any two points from the table. Let's pick (-3,-1) and (6,5).

Average rate of change = $\frac{\text{change in } y}{\text{change in } x}$

 $=\frac{5-(-1)}{6-(-3)}=\frac{6}{9}=\frac{2}{3}$

3. D

slope
$$=$$
 $\frac{y_2 - y_1}{x_2 - x_1} = \frac{b - 1}{1 - a} = 1$
 $\Rightarrow b - 1 = 1 - a \Rightarrow a + b = 2$

- 4. $\frac{5}{2}$ or 2.5 slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{-8 - 2}{-1 - 3} = \frac{-10}{-4} = \frac{5}{2}$
- 5. 12

slope
$$= \frac{y_2 - y_1}{x_2 - x_1} = \frac{r - 3}{-5 - 4} = \frac{r - 3}{-9} = -1$$

 $\Rightarrow r - 3 = 9 \Rightarrow r = 12$

6.
$$\frac{29}{2}$$
 or 14.5
slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{a - 7}{1 - a} = -\frac{5}{9}$
 $\Rightarrow 9(a - 7) = -5(1 - a)$
 $\Rightarrow 9a - 63 = -5 + 5a$
 $\Rightarrow 4a = 58 \Rightarrow a = \frac{58}{4} = \frac{29}{2}$

7. $\frac{1}{4}$ or 0.25 -x + 4y = 6Write the equation in slope-intercept form. $-x + 4y = 6 \implies 4y = x + 6 \implies y = \frac{x}{4} + \frac{6}{4}$ The slope of the line is $\frac{1}{4}$.

Section 3-3

- 1. C
- Since the points (-4, 2) and (4, -4) lie on the line, the slope of the line is $\frac{2-(-4)}{-4-4} = \frac{6}{-8} = -\frac{3}{4}$. If we use the point (4, -4) and the slope $m = -\frac{3}{4}$, the point-slope form of the line is $y-(-4) = -\frac{3}{4}(x-4)$ or $y+4 = -\frac{3}{4}(x-4)$. If we use the point (-4, 2) and the slope $m = -\frac{3}{4}$, the point-slope form of the line is $y-2 = -\frac{3}{4}(x-(-4))$ or $y-2 = -\frac{3}{4}(x+4)$. Choice C is correct. 2. B $y-2 = -\frac{3}{4}(x+4)$ Point-slope form of the line. $y-2 = -\frac{3}{4}x-3$ Distributive Property $y = -\frac{3}{4}x-1$ Add 2 to each side and simplify.

3. D

$$y = -\frac{3}{4}x - 1$$

Slope-intercept form
$$4y = 4(-\frac{3}{4}x - 1)$$

Multiply each side by 4.
$$4y = -3x - 4$$

Simplify.
$$4y + 3x = -3x - 4 + 3x$$

Add 3x to each side.
$$3x + 4y = -4$$

Simplify.

4. B

Average rate of change

 $= \frac{\text{change in number of smart phones}}{\text{change in years}}$

$$=\frac{345-120}{2010-2005}=\frac{225}{5}=45$$

The increase in the average number of smart phones is 45 each year.

5. D

Since the line passes through point (4, -1) and has slope -2, the point-slope form of the line is y - (-1) = -2(x - 4).

y+1 = -2(x-4)	Point-slope form simplified.
y+1 = -2x+8	Distributive Property
2x + y = 7	2x-1 is added to each side.

Section 3-4

1. B

Lines that are parallel have the same slope. So, we need to find the equation of a line with

the slope
$$-\frac{1}{2}$$
 and the point $(-2, \frac{1}{2})$.
The point-slope form of this line is
 $y - \frac{1}{2} = -\frac{1}{2}(x - (-2))$.
 $y - \frac{1}{2} = -\frac{1}{2}x - 1$ Simplified.
 $2(y - \frac{1}{2}) = 2(-\frac{1}{2}x - 1)$ Multiply each side by 2.
 $2y - 1 = -x - 2$ Simplify.
 $x + 2y = -1$ $x + 1$ is added to each side.

2. D

A line parallel to the x-axis has slope 0.

 $y - y_1 = m(x - x_1)$ Point-slope form y - 6 = 0(x - 7) m = 0, $x_1 = 7$, and $y_1 = 6$ y - 6 = 0 Simplify. y = 6

3. C

If a line is parallel to the *y*- axis, it is a vertical line and the equation is given in the form x = a, in which *a* is the *x*- coordinate of the point the line passes through. Therefore, the equation of the vertical line that passes through (-5,1) is x = -5.

4. 14

4x-2y=13 can be rewritten as $y = 2x - \frac{13}{2}$. The line has slope 2. Lines that are parallel have the same slope. Therefore, $2 = \frac{b-2}{5+1}$. Solving the equation for *b* gives b = 14. 5. $\frac{3}{2}$ or 1.5

Since lines l and m are parallel, the two lines have the same slope. Therefore,

$\frac{0-3}{2-0} = \frac{-3-b}{-1-(-4)} .$	
$\frac{-3}{2} = \frac{-3-b}{3}$	Simplified.
-9 = -6 - 2b $-3 = -2b$	Cross Multiplication Add 6 to each side.
$\frac{3}{2} = b$	Divide each side by -2 .

6. 3

The slope of line t is $\frac{1-(-3)}{2-(-4)}$, or $\frac{2}{3}$. So, the slope of the line perpendicular to line t is the negative reciprocal of $\frac{2}{3}$, or $-\frac{3}{2}$. Therefore, $-\frac{3}{2} = \frac{-2-4}{a+1} \implies -3(a+1) = 2(-6)$ $\implies -3a-3 = -12$ $\implies -3a = -9 \implies a = 3$

Section 3-5

1. B

y = 2x + 4	First equation
x - y = -1	Second equation

Substituting 2x + 4 for y in the second equation gives x - (2x + 4) = -1. $x - (2x + 4) = -1 \implies x - 2x - 4 = -1$ $\implies -x - 4 = -1 \implies -x = 3$ or x = -3Substituting -3 for x in the first equation gives y = 2(-3) + 4 = -2. Therefore, the solution (x, y)

to the given system of equations is (-3, -2).

2. B

$$\frac{1}{2}x + y = 1$$
First equation $\frac{-2x - y = 5}{2}$ Second equation $-\frac{3}{2}x = 6$ Add the equations. $-\frac{2}{3}(-\frac{3}{2}x) = -\frac{2}{3}(6)$ Multiply each side by $-\frac{2}{3}$

x = -4	Simplify.
$\frac{1}{2}(-4) + y = 1$	Substitute -4 for x in the first equation.
-2 + y = 1	Simplify.
<i>y</i> = 3	Add 2 to each side.
Therefore, $x + y$	= -4 + 3 = -1

3. $\frac{4}{5}$

If a system of two linear equations has no solution, then the lines represented by the equations in the coordinate plane are parallel. So, the slopes of the line are equal.

$$2x - ky = 14$$

$$y = \frac{2}{k}x - \frac{14}{k}$$

$$x = \frac{14}{k}$$

$$y = \frac{2}{k}x - \frac{14}{k}$$

$$y = \frac{5}{2}x - \frac{5}{2}$$

The system of equations will have no solution

if $\frac{2}{k} = \frac{5}{2}$. Solving for k yields $k = \frac{4}{5}$. If $k = \frac{4}{5}$, the y- intercept of the first equation is $-\frac{35}{2}$, and the y- intercept of the second equation is $-\frac{5}{2}$. Therefore, the lines are parallel, but not identical.

4. C

In order for a system of two linear equations to have infinitely many solutions, the two equations must be equivalent. The two equations in the answer choice A have different slopes. The two equations in the answer choice B have different y- intercepts. For answer choice C, multiply by

6 on each side of the first equation.

$$6(\frac{1}{2}x - \frac{1}{3}y) = 6(1) \implies 3x - 2y = 6.$$

The result is identical to the second equation. Therefore, the two equations are equivalent. The two equations in answer choice D have different slopes,

5. 1

Change the two equations into slope-intercept form.

$$ax - y = 0 \implies y = ax$$

 $x - by = 1 \implies y = \frac{1}{b}x - \frac{1}{b}$
If $a = \frac{1}{b}$, the system of equations will have no solution. Therefore, $a \cdot b = 1$

6. $\frac{4}{3}$

In order for a system of two linear equations to have infinitely many solutions, the two equations must be equivalent. The equation $2x - \frac{1}{2}y = 15$ can be rewritten as y = 4x - 30 and the equation $ax - \frac{1}{3}y = 10$ can be rewritten as y = 3ax - 30. If two equations are equivalent, then 4x = 3axor $a = \frac{4}{3}$.

Section 3-6

1. D

By definition, the absolute value of any expression is a nonnegative number. Therefore, |1-x|+6>0, |1-x|+4>0, and |1-x|+2>0. Only |1-x|-2could be a negative number. $|1-x|-2=-1 \implies |1-x|=1 \implies x=2$ or x=0.

2. A

$$2x + 7| = 5$$

 $2x + 7 = 5$ or $2x + 7 = -5$
 $2x = -2$ or $2x = -12$
 $x = -1$ or $x = -6$

3. A

|x-1|-1=1 |x-1|=2Add 1 to each side. x-1=2 or x-1=-2The expression can be 2 or -2. x=3 or x=-1Add 1 to each side.

4. D

The expression |3x-5| is the absolute value of 3x-5, and the absolute value can never be a negative number. Thus |3x-5| = -1 has no solution

5. C

The maximum value of the function corresponds to the y- coordinate of the point on the graph, which is highest along the vertical axis. The highest point along the y- axis has coordinates (1,4). Therefore, the value of x at the maximum of f(x) is 1.

6. 3

3-|3-n|=3 -|3-n|=0 Subtract 3 from each side. If -|3-n|=0 or |3-n|=0, then 3-n=0, Thus n=3.

Chapter 3 Practice Test

1. C

Use the slope formula to find the slope of the function. Since f(x) is a linear function, the slope between (-4, -4) and (0, -1) equals the slope between (0, -1) and (6, k).

Therefore, $\frac{-1-(-4)}{0-(-4)} = \frac{k}{2}$	$\frac{k-(-1)}{6-0}.$
$\frac{3}{4} = \frac{k+1}{6}$	Simplify.
4(k+1) = 18	Cross Multiplication
4k + 4 = 18	Distributive Property
4k = 14	Subtract 4 from each side.
$k = \frac{7}{2}$ or 3.5	Divide each side by 4.

2. B

The equation of the line with slope $\frac{1}{3}$ and point

(9,1) is
$$y-1 = \frac{1}{3}(x-9)$$
 or $y = \frac{1}{3}x-2$

The slope of the second line is $\frac{-3-4}{5-(-2)}$ or -1. The equation of the second line is y-4 = -1(x+2)

or y = -x + 2. To find the point of intersection, substitute $\frac{1}{3}x - 2$ for y in the second equation and solve for x.

$$\frac{1}{3}x - 2 = -x + 2$$

Solving for x yields x = 3. Substituting 3 for x in the equation of the second line yields y = -1. Therefore, (a,b) = (3,-1) and a+b=3-1=2.

3. C

The expressions |x+5| or |x-5| can never be a negative number. Thus 5+|x+5| or 5+|x-5|can not equal zero. The expression -|x-5|can never be a positive number. Thus -5-|x-5|can not equal zero. If -5+|x+5|=0, then |x+5|=5, when x=0.

If the slope of a line is positive, it is possible that the line contains no points from Quadrant II or from Quadrant IV. If the slope of a line is negative, it is possible that the line contains no points from Quadrant I or from Quadrant III. Since the line ℓ contains points from each of the Quadrants I, III, and IV, but no points from Quadrant II, the slope of line ℓ must be positive.

5. B

x	-3	-1	1	5
f(x)	9	5	1	-7

First, find the slope of the linear function f. We can choose any two points from the table. Let's use (1,1) and (-1,5) to find the slope m

of $f \cdot m = \frac{5-1}{-1-1} = \frac{4}{-2} = -2$. Thus the slope intercept form of f can be written as f(x) = -2x + b. From the table we know f(1) = 1. f(1) = -2(1) + b = 1 implies b = 3. Thus f is defined as f(x) = -2x + 3. 6. A f(x) = -6x + 1 $f(\frac{1}{2}x - 1) = -6(\frac{1}{2}x - 1) + 1$ Substitute $\frac{1}{2}x - 1$ for x. = -3x + 6 + 1Distributive Property = -3x + 7Simplify.

7. B

Since the points (0,3000) and (4,2400) lie on the line, the slope of the line is $\frac{2400-3000}{4-0} = -150$. The *H*-intercept of the line is 3,000. Therefore the relationship between *H* and *m* can be represented by H = -150m + 3000, the slopeintercept form of the line.

8. C

H = -150m + 3000 Equation of the line 1350 = -150m + 3000 Substitute 1350 for *H*.

Solving for m yields m = 11.

9. D

The point-slope form of the line that passes through the point (1,-2) and has a slope of $\frac{1}{3}$ is $y+2=\frac{1}{3}(x-1)$. The slope-intercept form of the line is $y=\frac{1}{3}x-\frac{7}{3}$. We can replace f(x) for y to get the function form. Thus, $f(x)=\frac{1}{3}x-\frac{7}{3}$. Now check each answer choices. A) (3,-2) $f(3)=\frac{1}{3}(3)-\frac{7}{3}=-\frac{4}{3}\neq -2$ B) (2,- $\frac{4}{3}$) $f(2)=\frac{1}{3}(2)-\frac{7}{3}=-\frac{5}{3}\neq -\frac{4}{3}$ C) (0,-2) $f(0)=\frac{1}{3}(0)-\frac{7}{3}=-\frac{7}{3}\neq -2$ D) $(-1,-\frac{8}{3})$ $f(-1)=\frac{1}{3}(-1)-\frac{7}{3}=-\frac{8}{3}$

Choice D is correct.

10.3

$$f(x) = ax + 2$$

If $f(-1) = 4$, then $f(-1) = a(-1) + 2 = 4$.

Solving for *a* yields a = -2. Thus f(x) = -2x + 2 and $f(-\frac{1}{2}) = -2(-\frac{1}{2}) + 2 = 3$.

11.2

Use the slope formula. Slope = $\frac{k - (-4)}{6 - 2} = \frac{3}{2}$. $\frac{k + 4}{4} = \frac{3}{2}$ Simplify. $2(k + 4) = 3 \cdot 4$ Cross Product 2k + 8 = 12 Distributive Property

Solving for k yields k = 2.

12.6

 $\frac{1}{3}x - \frac{3}{4}y = -11 \implies \qquad x - \frac{9}{4}y = -33$ $\frac{1}{2}x + \frac{1}{6}y = -1 \qquad \Longrightarrow \qquad -x - \frac{1}{3}y = 2$ Add the equations and we get $-\frac{9}{4}y - \frac{1}{2}y = -31$. $12(-\frac{9}{4}y - \frac{1}{3}y) = 12(-31)$ Multiply each side by 12. -27y - 4y = -372**Distributive Property** -31y = -372Simplify. $\frac{-31y}{-31} = \frac{-372}{-31}$ Divide each side by -31. y = 12Simplify. $\frac{1}{2}x - \frac{3}{4}y = -11$ First equation $\frac{1}{3}x - \frac{3}{4}(12) = -11$ y = 12 $\frac{1}{3}x - 9 = -11$ Simplify. $\frac{1}{3}x-9+9=-11+9$ Add 9 to each side. $\frac{1}{3}x = -2$ Simplify. $3(\frac{1}{2}x) = 3(-2)$ Multiply each side by -2. x = -6Simplify.

Therefore, x + y = -6 + 12 = 6.